Research Article
BibTex RIS Cite
Year 2025, Volume: 45 Issue: 1, 57 - 70, 01.03.2025
https://doi.org/10.52794/hujpharm.1566707

Abstract

References

  • 1. Moutinho S. Tuberculosis is the oldest pandemic, and poverty makes it continue. Nature. 2022;605:S16-S20. https://doi.org/ 10.1038/d41586-022-01348-0.
  • 2. Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354- 73. https://doi.org/ 10.1093/femsre/fux011.
  • 3. Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol. 2020;128(6):1547-67. https:// doi.org/ 10.1111/jam.14478.
  • 4. Machelart A, Salzano G, Li X, Demars A, Debrie AS, Menendez- Miranda M, et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano. 2019;13:3992- 4007. https://doi.org/ 10.1021/acsnano.8b07902.
  • 5. Maretti E, Costantino L, Rustichelli C, Leo E, Croce MA, Buttini F, et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 2017;528(1-2):440-51. https://doi.org/ 10.1016/j. ijpharm.2017.06.045.
  • 6. Poh W, Ab Rahman N, Ostrovski Y, Sznitman J, Pethe K, Loo SCJ. Active pulmonary targeting against tuberculosis (TB) via triple-encapsulation of Q203, bedaquiline and superparamagnetic iron oxides (SPIOs) in nanoparticle aggregates. Drug Deliv. 2019;26(1):1039-48. https://doi.org/ 10.1080/10717544.2019.1676841.
  • 7. Ramalingam V, Sundaramahalingam S, Rajaram R. Size-dependent antimycobacterial activity of titanium oxide nanoparticles against: Mycobacterium tuberculosis. J Mater Chem B. 2019;7:4338-46. https://doi.org/10.1039/C9TB00784A.
  • 8. Rai PY, Sansare VA, Warrier DU, Shinde UA. Formulation, characterization and evaluation of inhalable effervescent dry powder of Rifampicin nanoparticles. Indian J Tuberc. 2023;70(1):49-58. https://doi.org/ 10.1016/j.ijtb.2022.03.007.
  • 9. Ivana Romina I R, Benjamín B, Melina Mara M M, Gladys Ester G E. Quantification of rifampicin loaded into inhaled polymeric nanoparticles by reversed phase high-performance liquid chromatography in pulmonary nonphagocytic cellular uptake. Anal Methods. 2024;16(13):1908-1915. https://doi. org/ 10.1039/d4ay00234b.
  • 10. Mukhtar M, Csaba N, Robla S, Varela-Calviño R, Nagy A, Burian K, Kókai D, Ambrus R. Dry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosis. Pharmaceutics. 2022;14(8):1543. https://doi.org/ 10.3390/pharmaceutics14081543.
  • 11. Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H, Mesgari-Abbasi M, et al. Ethambutol- loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech. 2019;20(3):120. https://doi.org/ 10.1208/s12249-019-1334-y.
  • 12. Gonzalez Gomez A, Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect Dis. 2020;6(5):896- 908. https://doi.org/ 10.1021/acsinfecdis.9b00357.
  • 13. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. https://doi.org/ 10.3390/molecules25163731.
  • 14. Bachhav SS, Dighe VD, Kotak D, Devarajan PV. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm. 2017;532(1):612-22. https://doi.org/ 10.1016/j.ijpharm.2017.09.040.
  • 15. Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, et al. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019;14:4961- 74. https://doi.org/ 10.2147/IJN.S209325.
  • 16. Garg NK, Tyagi RK, Sharma G, Jain A, Singh B, Jain S, et al. Functionalized lipid-polymer hybrid nanoparticles mediated codelivery of methotrexate and aceclofenac: A synergistic effect in breast cancer with ımproved pharmacokinetics attributes. Mol Pharm. 2017;14(6):1883-97. https://doi.org/ 10.1021/ acs.molpharmaceut.6b01148.
  • 17. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnol. 2018;16:64. https://doi.org/ 10.1186/s12951-018-0391-9.
  • 18. Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, et al. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep. 2017;7:5901. https://doi.org/ 10.1038/s41598-017-06142-x.
  • 19. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods. 2019;160:130- 42. https://doi.org/ 10.1016/j.mimet.2019.03.017.
  • 20. Shah S, Famta P, Raghuvanshi RS, Singh SB, Srivastava S. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci Commun. 2022;46:100570. https://doi.org/10.1016/j.colcom. 2021.100570
  • 21. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3 Pt A):427- 43. https://doi.org/ 10.1016/j.ejpb.2013.07.002.
  • 22. Singh A, Somvanshi P, Grover A. Pyrazinamide drug resistance in RpsA mutant (Δ438A) of Mycobacterium tuberculosis: Dynamics of essential motions and free-energy landscape analysis. J Cell Bio. 2019;120(5):7386-402. https://doi.org/ 10.1002/jcb.28013.
  • 23. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of pyrazinamide action and resistance. Microbiol Spectr. 2014;2(4):MGM2-0023-2013. https://doi.org/ 10.1128/microbiolspec. MGM2-0023-2013.
  • 24. Zimhony O, Cox JS, Welch JT, Vilchèze C, Jacobs WR Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med. 2000;6(9):1043-7. https://doi.org/ 10.1038/79558.
  • 25. Ramappa V, Aithal GP. Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management. J Clin Exp Hepatol. 2013;3(1):37-49. 10.1016/j.jceh.2012.12.001.
  • 26. Balay G, Abdella K, Kebede W, Tadesse M, Bonsa Z, Mekonnen M, et al. Resistance to pyrazinamide in Mycobacterium tuberculosis complex isolates from previously treated tuberculosis cases in Southwestern Oromia, Ethiopia. J Clin Tuberc Other Mycobact Dis. 2023;34:100411. https://doi.org/ 10.1016/j.jctube.2023.100411.
  • 27. Singh A, Das SS, Ruokolainen J, Kesari KK, Singh SK. Biopolymer- capped pyrazinamide-loaded colloidosomes: In vitro characterization and bioavailability studies. ACS Omega. 2023 Jul 7;8(28):25515-25524. https://doi.org/ 10.1021/ acsomega.3c03135.
  • 28. Eedara BB, Tucker IG, Das SC. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. Int J Pharm. 2016 Jun 15;506(1-2):174-83. https://doi.org/ 10.1016/j.ijpharm.2016.04.038.
  • 29. Pham D, Fattal E, Tsapis N. Pyrazinamide-loaded poly(lactideco- glycolide) nanoparticles: Optimization by experimental design. J Drug Deliv Sci Technol. 2015;30:384-390. https://doi. org/10.1016/j.jddst.2015.07.006.
  • 30. Simões MF, Valente E, Gómez MJ, Anes E, Constantino L. Lipophilic pyrazinoic acid amide and ester prodrugs stability, activation and activity against M. tuberculosis. Eur J Pharm Sci. 2009;37(3-4):257-63. https://doi.org/ 10.1016/j. ejps.2009.02.012.
  • 31. Salel S, Iyisan B. Polymer-lipid hybrid nanoparticles as potential lipophilic anticancer drug carriers. Discov Nano. 2023;18(1):114. https://doi.org/ 10.1186/s11671-023-03897-3.
  • 32. Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, Hashemi E, Oroojalian F, Hashemi M. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: Formulation and characterization. Appl Biochem Biotechnol. 2022;194(8):3733- 48. https://doi.org/ 10.1007/s12010-022-03812-z.
  • 33. Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. Molecules. 2021;26(18):5432. https://doi.org/ 10.3390/molecules26185432.
  • 34. Parmar A, Kaur G, Kapil S, Sharma V, Sharma S. Central composite design-based optimization and fabrication of benzylisothiocynate- loaded PLGA nanoparticles for enhanced antimicrobial attributes. Appl Nanosci. 2020;10:379-89. https:// doi.org/10.1007/s13204-019-01185-0.
  • 35. Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release. 2019;315:23-30. https://doi.org/ 10.1016/j.jconrel.2019.09.016.
  • 36. Iftime MM, Dobreci DL, Irimiciuc SA, Agop M, Petrescu T, Doroftei B. A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations. Drug Deliv. 2020;27(1):1125-33. https://doi.org/ 10.1080/10717544.2020.1797242.
  • 37. Sheth P, Stein SW, Myrdal PB. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers. AAPS PharmSciTech. 2015;16(1):192-201. https://doi.org/ 10.1208/s12249-014-0210-z.
  • 38. Debnath SK, Srinivasan S, Debnath M. Development of dry powder ınhaler containing prothionamide-plga nanoparticles optimized through statistical design: ın-vivo study. The Open Nanomedicine Journal. 2017;4(1):30-40. https://doi.org/ 10.2174/1875933501704010030.
  • 39. Dai W, Zhang D, Duan C, Jia L, Wang Y, Feng F, et al. Preparation and characteristics of oridonin-loaded nanostructured lipid carriers as a controlled-release delivery system. J Microencapsul. 2010;27(3):234-41. https://doi.org/ 10.3109/02652040903079526.
  • 40. Apostolou M, Assi S, Fatokun AA, Khan I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J Pharm Sci. 2021;110(8):2859-2872. https://doi.org/ 10.1016/j.xphs.2021.04.012.
  • 41. Xu L, Wang X, Yang G, Zhao Z, Weng Y, Li Y, Liu Y, Zhao C. Development of a concentration-controlled sequential nanoprecipitation for making lipid nanoparticles with high drug loading. Aggregate. 2023;4(6):e369. https://doi.org/10.1002/ agt2.369.
  • 42. Saharan P, Bhatt DC, Saharan SP, Bahmani K. The study the effect of polymer and surfactant concentration on characteristics of nanoparticle formulations. Der Pharm. Lett. 2015; 7(12):365-371.
  • 43. Nair AB, Sreeharsha N, Al-Dhubiab BE, Hiremath JG, Shinu P, Attimarad M, et al. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of sitagliptin: Optimization and ın vivo evaluation in rats. Materials (Basel). 2019;12(24):4239. https://doi.org/ 10.3390/ma12244239.
  • 44. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016;3(1):3. https://doi.org/ 10.1186/s40580-016- 0061-2.
  • 45. Mirnezami SMS, Heydarinasab A, Akbarzadehkhyavi A, Adrjmand M. Development and optimization of lipid-polymer hybrid nanoparticles containing melphalan using central composite design and ıts effect on ovarian cancer cell lines. Iran J Pharm Res. 2021;20(4):213-228. https://doi.org/ 10.22037/ ijpr.2021.114575.14923.
  • 46. Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, Mäkilä E, Salonen J, Santos HA. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm. 2017;533(1):156-168. https://doi.org/ 10.1016/j.ijpharm. 2017.09.061.
  • 47. Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a customtailored next-generation approach for cancer therapeutics. Mol Cancer. 2023;22(1):160. https://doi.org/ 10.1186/s12943-023- 01849-0.
  • 48. Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric Lipid Hybrid Nanoparticles (PLNs) as emerging drug delivery platform-a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 2021;13(8):1291. https://doi.org/ 10.3390/pharmaceutics13081291.
  • 49. Shafique M, Ur Rehman M, Kamal Z, Alzhrani RM, Alshehri S, Alamri AH, et al. Formulation development of lipid polymer hybrid nanoparticles of doxorubicin and its in-vitro, in-vivo and computational evaluation. Front Pharmacol. 2023;14:1025013. https://doi.org/ 10.3389/fphar.2023.1025013.
  • 50. Yadav P, Rastogi V, Verma A. Application of Box–Behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Futur J Pharm Sci. 2020;6:7. https://doi.org/10.1186/s43094-020-00023-3.
  • 51. Saifullah B, Arulselvan P, Fakurazi S, Webster TJ, Bullo N, Hussein MZ, El Zowalaty ME. Development of a novel antituberculosis nanodelivery formulation using magnesium layered hydroxide as the nanocarrier and pyrazinamide as a model drug. Sci Rep. 2022;12(1):14086. https://doi.org/ 10.1038/ s41598-022-15953-6.
  • 52. Powder Flow, General Chapters: 1174, US Pharmacopoeia 29. [cited Feb 2025] Available from: http://www.pharmacopeia. cn/v29240/usp29nf24s0_c1174.html
  • 53. Koduri SC, Napoleon AA. Mathematical model application for in vitro release kinetics of ranolazine extended-release tablets. Dissol Technol. 2024;31(4):182-188.https://doi.org/ 10.14227/DT310424P182.
  • 54. Fernández Tena A, Casan Clarà P. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48(7):240-6. https://doi.org/10.1016/j.arbres.2012.02.003.
  • 55. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci. 2014;15(4):5852-73.https://doi.org/ 10.3390/ijms15045852.
  • 56. Kole EB, Jadhav K, Sirsath N, Dudhe P. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol. 2023; 81:104261. https://doi.org/10.1016/j.jddst.2023.104261.

Inhalable Pyrazinamide Loaded Lipid Polymer Hybrid Nanoparticles: In vitro and In vivo Lung Deposition Studies

Year 2025, Volume: 45 Issue: 1, 57 - 70, 01.03.2025
https://doi.org/10.52794/hujpharm.1566707

Abstract

In the present report, a nanoparticle based inhalable formulation of Pyrazinamide was prepared and evaluated for targeted drug delivery for pulmonary tuberculosis. Lipid polymer hybrid nanoparticles (LPHNs) loaded with pyrazinamide was prepared using emulsion-solvent evaporation technique with further optimization using design of experiments. Amount of polymer and lipid were chosen as the independent factors and particle size, percentage entrapment efficiency, and drug release at 6 hours (D6) were chosen as dependent variables. Optimized batch revealed particle size of 160.9 nm, % entrapment efficiency of 62.34 %, zetapotential of -27.45 mV and in-vitro drug release at 6 h of 75.18 %. The mean aerodynamic diameter of the particles was 0.845 μm which indicates ability to penetrate deep into the lungs. İn vivo deposition studies demonstrated enhanced efficacy of the nano-formulation as compared to pure drug. Stability testing was expedited for the optimized batch of LPHN and the results confirmed no remarkable deviations in the values. Overall, the findings indicate LPHNs made of biodegradable lipid as a viable method for pulmonary drug administration of pyrazinamide.

References

  • 1. Moutinho S. Tuberculosis is the oldest pandemic, and poverty makes it continue. Nature. 2022;605:S16-S20. https://doi.org/ 10.1038/d41586-022-01348-0.
  • 2. Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41(3):354- 73. https://doi.org/ 10.1093/femsre/fux011.
  • 3. Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol. 2020;128(6):1547-67. https:// doi.org/ 10.1111/jam.14478.
  • 4. Machelart A, Salzano G, Li X, Demars A, Debrie AS, Menendez- Miranda M, et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano. 2019;13:3992- 4007. https://doi.org/ 10.1021/acsnano.8b07902.
  • 5. Maretti E, Costantino L, Rustichelli C, Leo E, Croce MA, Buttini F, et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 2017;528(1-2):440-51. https://doi.org/ 10.1016/j. ijpharm.2017.06.045.
  • 6. Poh W, Ab Rahman N, Ostrovski Y, Sznitman J, Pethe K, Loo SCJ. Active pulmonary targeting against tuberculosis (TB) via triple-encapsulation of Q203, bedaquiline and superparamagnetic iron oxides (SPIOs) in nanoparticle aggregates. Drug Deliv. 2019;26(1):1039-48. https://doi.org/ 10.1080/10717544.2019.1676841.
  • 7. Ramalingam V, Sundaramahalingam S, Rajaram R. Size-dependent antimycobacterial activity of titanium oxide nanoparticles against: Mycobacterium tuberculosis. J Mater Chem B. 2019;7:4338-46. https://doi.org/10.1039/C9TB00784A.
  • 8. Rai PY, Sansare VA, Warrier DU, Shinde UA. Formulation, characterization and evaluation of inhalable effervescent dry powder of Rifampicin nanoparticles. Indian J Tuberc. 2023;70(1):49-58. https://doi.org/ 10.1016/j.ijtb.2022.03.007.
  • 9. Ivana Romina I R, Benjamín B, Melina Mara M M, Gladys Ester G E. Quantification of rifampicin loaded into inhaled polymeric nanoparticles by reversed phase high-performance liquid chromatography in pulmonary nonphagocytic cellular uptake. Anal Methods. 2024;16(13):1908-1915. https://doi. org/ 10.1039/d4ay00234b.
  • 10. Mukhtar M, Csaba N, Robla S, Varela-Calviño R, Nagy A, Burian K, Kókai D, Ambrus R. Dry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosis. Pharmaceutics. 2022;14(8):1543. https://doi.org/ 10.3390/pharmaceutics14081543.
  • 11. Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H, Mesgari-Abbasi M, et al. Ethambutol- loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech. 2019;20(3):120. https://doi.org/ 10.1208/s12249-019-1334-y.
  • 12. Gonzalez Gomez A, Hosseinidoust Z. Liposomes for antibiotic encapsulation and delivery. ACS Infect Dis. 2020;6(5):896- 908. https://doi.org/ 10.1021/acsinfecdis.9b00357.
  • 13. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. https://doi.org/ 10.3390/molecules25163731.
  • 14. Bachhav SS, Dighe VD, Kotak D, Devarajan PV. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm. 2017;532(1):612-22. https://doi.org/ 10.1016/j.ijpharm.2017.09.040.
  • 15. Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, et al. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019;14:4961- 74. https://doi.org/ 10.2147/IJN.S209325.
  • 16. Garg NK, Tyagi RK, Sharma G, Jain A, Singh B, Jain S, et al. Functionalized lipid-polymer hybrid nanoparticles mediated codelivery of methotrexate and aceclofenac: A synergistic effect in breast cancer with ımproved pharmacokinetics attributes. Mol Pharm. 2017;14(6):1883-97. https://doi.org/ 10.1021/ acs.molpharmaceut.6b01148.
  • 17. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnol. 2018;16:64. https://doi.org/ 10.1186/s12951-018-0391-9.
  • 18. Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, et al. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep. 2017;7:5901. https://doi.org/ 10.1038/s41598-017-06142-x.
  • 19. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods. 2019;160:130- 42. https://doi.org/ 10.1016/j.mimet.2019.03.017.
  • 20. Shah S, Famta P, Raghuvanshi RS, Singh SB, Srivastava S. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci Commun. 2022;46:100570. https://doi.org/10.1016/j.colcom. 2021.100570
  • 21. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3 Pt A):427- 43. https://doi.org/ 10.1016/j.ejpb.2013.07.002.
  • 22. Singh A, Somvanshi P, Grover A. Pyrazinamide drug resistance in RpsA mutant (Δ438A) of Mycobacterium tuberculosis: Dynamics of essential motions and free-energy landscape analysis. J Cell Bio. 2019;120(5):7386-402. https://doi.org/ 10.1002/jcb.28013.
  • 23. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of pyrazinamide action and resistance. Microbiol Spectr. 2014;2(4):MGM2-0023-2013. https://doi.org/ 10.1128/microbiolspec. MGM2-0023-2013.
  • 24. Zimhony O, Cox JS, Welch JT, Vilchèze C, Jacobs WR Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med. 2000;6(9):1043-7. https://doi.org/ 10.1038/79558.
  • 25. Ramappa V, Aithal GP. Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management. J Clin Exp Hepatol. 2013;3(1):37-49. 10.1016/j.jceh.2012.12.001.
  • 26. Balay G, Abdella K, Kebede W, Tadesse M, Bonsa Z, Mekonnen M, et al. Resistance to pyrazinamide in Mycobacterium tuberculosis complex isolates from previously treated tuberculosis cases in Southwestern Oromia, Ethiopia. J Clin Tuberc Other Mycobact Dis. 2023;34:100411. https://doi.org/ 10.1016/j.jctube.2023.100411.
  • 27. Singh A, Das SS, Ruokolainen J, Kesari KK, Singh SK. Biopolymer- capped pyrazinamide-loaded colloidosomes: In vitro characterization and bioavailability studies. ACS Omega. 2023 Jul 7;8(28):25515-25524. https://doi.org/ 10.1021/ acsomega.3c03135.
  • 28. Eedara BB, Tucker IG, Das SC. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. Int J Pharm. 2016 Jun 15;506(1-2):174-83. https://doi.org/ 10.1016/j.ijpharm.2016.04.038.
  • 29. Pham D, Fattal E, Tsapis N. Pyrazinamide-loaded poly(lactideco- glycolide) nanoparticles: Optimization by experimental design. J Drug Deliv Sci Technol. 2015;30:384-390. https://doi. org/10.1016/j.jddst.2015.07.006.
  • 30. Simões MF, Valente E, Gómez MJ, Anes E, Constantino L. Lipophilic pyrazinoic acid amide and ester prodrugs stability, activation and activity against M. tuberculosis. Eur J Pharm Sci. 2009;37(3-4):257-63. https://doi.org/ 10.1016/j. ejps.2009.02.012.
  • 31. Salel S, Iyisan B. Polymer-lipid hybrid nanoparticles as potential lipophilic anticancer drug carriers. Discov Nano. 2023;18(1):114. https://doi.org/ 10.1186/s11671-023-03897-3.
  • 32. Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, Hashemi E, Oroojalian F, Hashemi M. Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: Formulation and characterization. Appl Biochem Biotechnol. 2022;194(8):3733- 48. https://doi.org/ 10.1007/s12010-022-03812-z.
  • 33. Hassan H, Adam SK, Alias E, Meor Mohd Affandi MMR, Shamsuddin AF, Basir R. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. Molecules. 2021;26(18):5432. https://doi.org/ 10.3390/molecules26185432.
  • 34. Parmar A, Kaur G, Kapil S, Sharma V, Sharma S. Central composite design-based optimization and fabrication of benzylisothiocynate- loaded PLGA nanoparticles for enhanced antimicrobial attributes. Appl Nanosci. 2020;10:379-89. https:// doi.org/10.1007/s13204-019-01185-0.
  • 35. Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release. 2019;315:23-30. https://doi.org/ 10.1016/j.jconrel.2019.09.016.
  • 36. Iftime MM, Dobreci DL, Irimiciuc SA, Agop M, Petrescu T, Doroftei B. A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations. Drug Deliv. 2020;27(1):1125-33. https://doi.org/ 10.1080/10717544.2020.1797242.
  • 37. Sheth P, Stein SW, Myrdal PB. Factors influencing aerodynamic particle size distribution of suspension pressurized metered dose inhalers. AAPS PharmSciTech. 2015;16(1):192-201. https://doi.org/ 10.1208/s12249-014-0210-z.
  • 38. Debnath SK, Srinivasan S, Debnath M. Development of dry powder ınhaler containing prothionamide-plga nanoparticles optimized through statistical design: ın-vivo study. The Open Nanomedicine Journal. 2017;4(1):30-40. https://doi.org/ 10.2174/1875933501704010030.
  • 39. Dai W, Zhang D, Duan C, Jia L, Wang Y, Feng F, et al. Preparation and characteristics of oridonin-loaded nanostructured lipid carriers as a controlled-release delivery system. J Microencapsul. 2010;27(3):234-41. https://doi.org/ 10.3109/02652040903079526.
  • 40. Apostolou M, Assi S, Fatokun AA, Khan I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J Pharm Sci. 2021;110(8):2859-2872. https://doi.org/ 10.1016/j.xphs.2021.04.012.
  • 41. Xu L, Wang X, Yang G, Zhao Z, Weng Y, Li Y, Liu Y, Zhao C. Development of a concentration-controlled sequential nanoprecipitation for making lipid nanoparticles with high drug loading. Aggregate. 2023;4(6):e369. https://doi.org/10.1002/ agt2.369.
  • 42. Saharan P, Bhatt DC, Saharan SP, Bahmani K. The study the effect of polymer and surfactant concentration on characteristics of nanoparticle formulations. Der Pharm. Lett. 2015; 7(12):365-371.
  • 43. Nair AB, Sreeharsha N, Al-Dhubiab BE, Hiremath JG, Shinu P, Attimarad M, et al. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of sitagliptin: Optimization and ın vivo evaluation in rats. Materials (Basel). 2019;12(24):4239. https://doi.org/ 10.3390/ma12244239.
  • 44. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016;3(1):3. https://doi.org/ 10.1186/s40580-016- 0061-2.
  • 45. Mirnezami SMS, Heydarinasab A, Akbarzadehkhyavi A, Adrjmand M. Development and optimization of lipid-polymer hybrid nanoparticles containing melphalan using central composite design and ıts effect on ovarian cancer cell lines. Iran J Pharm Res. 2021;20(4):213-228. https://doi.org/ 10.22037/ ijpr.2021.114575.14923.
  • 46. Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, Mäkilä E, Salonen J, Santos HA. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm. 2017;533(1):156-168. https://doi.org/ 10.1016/j.ijpharm. 2017.09.061.
  • 47. Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a customtailored next-generation approach for cancer therapeutics. Mol Cancer. 2023;22(1):160. https://doi.org/ 10.1186/s12943-023- 01849-0.
  • 48. Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric Lipid Hybrid Nanoparticles (PLNs) as emerging drug delivery platform-a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 2021;13(8):1291. https://doi.org/ 10.3390/pharmaceutics13081291.
  • 49. Shafique M, Ur Rehman M, Kamal Z, Alzhrani RM, Alshehri S, Alamri AH, et al. Formulation development of lipid polymer hybrid nanoparticles of doxorubicin and its in-vitro, in-vivo and computational evaluation. Front Pharmacol. 2023;14:1025013. https://doi.org/ 10.3389/fphar.2023.1025013.
  • 50. Yadav P, Rastogi V, Verma A. Application of Box–Behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Futur J Pharm Sci. 2020;6:7. https://doi.org/10.1186/s43094-020-00023-3.
  • 51. Saifullah B, Arulselvan P, Fakurazi S, Webster TJ, Bullo N, Hussein MZ, El Zowalaty ME. Development of a novel antituberculosis nanodelivery formulation using magnesium layered hydroxide as the nanocarrier and pyrazinamide as a model drug. Sci Rep. 2022;12(1):14086. https://doi.org/ 10.1038/ s41598-022-15953-6.
  • 52. Powder Flow, General Chapters: 1174, US Pharmacopoeia 29. [cited Feb 2025] Available from: http://www.pharmacopeia. cn/v29240/usp29nf24s0_c1174.html
  • 53. Koduri SC, Napoleon AA. Mathematical model application for in vitro release kinetics of ranolazine extended-release tablets. Dissol Technol. 2024;31(4):182-188.https://doi.org/ 10.14227/DT310424P182.
  • 54. Fernández Tena A, Casan Clarà P. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48(7):240-6. https://doi.org/10.1016/j.arbres.2012.02.003.
  • 55. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci. 2014;15(4):5852-73.https://doi.org/ 10.3390/ijms15045852.
  • 56. Kole EB, Jadhav K, Sirsath N, Dudhe P. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol. 2023; 81:104261. https://doi.org/10.1016/j.jddst.2023.104261.
There are 56 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences, Pharmaceutical Delivery Technologies
Journal Section Research Articles
Authors

Komal Parmar 0000-0001-8564-163X

Urvi Mav 0009-0008-1202-4057

Publication Date March 1, 2025
Submission Date October 14, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 45 Issue: 1

Cite

Vancouver Parmar K, Mav U. Inhalable Pyrazinamide Loaded Lipid Polymer Hybrid Nanoparticles: In vitro and In vivo Lung Deposition Studies. HUJPHARM. 2025;45(1):57-70.