Review
BibTex RIS Cite

Detection of Endocrine Disrupting Drugs with Quantum Dot Molecularly Imprinted Polymer

Year 2025, Volume: 45 Issue: 2, 175 - 187, 01.06.2025
https://doi.org/10.52794/hujpharm.1639507

Abstract

Endocrine disrupting chemicals are causing serious harm to health and increasing the disease burden worldwide and pose a global health risk by disrupting the endocrine system through various biological pathways. The combination of MIPs and QDs offers high sensitivity fluorescence analysis and holds promise for detection at very low concentrations. In recent years, quantum dots have found significant application in biomedical applications such as biosensors and clinical diagnosis due to their traceable optical properties. QDs have unique optical advantages such as high luminescence intensity, high molar extinction coefficient and customizable emission properties depending on their size. With the help of MIPs, QDs specifically recognize target analytes, interact with the fluorescent signal source and thus changes in the fluorescence intensity of the target analyte can be monitored. The presence of endocrine disrupting drugs in water, biological fluids, animal feed and meat samples is known as a result of studies. Considering the difficulty and durability of biodegradation of these drugs, their detection by QD/MIPs is of great importance. This review summarizes recent work on the development of fluorescent QD/MIP sensors for the detection of endocrine disrupting drugs.

References

  • 1. Son E, Kwon KH. How body burden from exposure to endocrine disruptors effects accelerated aging?. Environ Res Tec. 2023;6(4):383-390. https://doi.org/10.35208/ert.1334434
  • 2. Sabir S, Akhtar MF, Saleem A. Endocrine disruption as an adverse effect of non-endocrine targeting pharmaceuticals. Envıron Scı Pollut R. 2019;26:1277–1286. https://doi.org/10.1007/s11356-018-3774-4
  • 3. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms and perspectives. Toxicol Appl Pharm. 2013;268(2):157–177. https://doi.org/10.1016/j.taap.2013.01.025
  • 4. Perng W, Cantoral A, Soria-Contreras D, Betanzos-Robledo L, Kordas K, Liu Y, et al. Exposure to obesogenic endocrine disrupting chemicals and obesity among youth of Latino or Hispanic origin in the United States and Latin America: A lifecourse perspective. Obes. Rev. 2021;22(S3). https://doi.org/10.1111/obr.13245
  • 5. Güntürk A. Güncel Obezojenler. In: Kadiroğlu A.K, editor. Güncel Genel Dahiliye Çalışmaları. Chapter 4. 2022. p. 35-47.
  • 6. Rato L, Sousa AC. The impact of endocrine-disrupting chemicals in male fertility: focus on the action of obesogens. J. Xenobiotics, 2021;11(4):163-196. https://doi.org/10.3390/jox11040012
  • 7. Mascarenhas C, Sousa ACA, Rato L. Effects of Pharmaceutical Substances with Obesogenic Activity on Male Reproducti-ve Health. Int. J. Mol. Sci. Int. J. Mol. Sci. 2024; 25(4). https://doi.org/10.3390/ijms25042324
  • 8. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. New Eng. J. Med. 2006;355:2427–2443. doi: 10.1056/NEJMoa066224
  • 9. Messerli FH, Bell DSH, Fonseca V, Katholi RE, McGill JB, Phillips RA, et al. Body weight changes with β-blocker use: Results from GEMINI. Am. J. Med. 2007;120(7): 610-615. doi:10.1016/j.amjmed.2006.10.017
  • 10. Verhaegen AA, Van Gaal LF. Drug-induced obesity and its metabolic consequences: A review with a focus on mechanisms and possible therapeutic options. J. Endocrinol. Investig. 2017;40(11):1165–1174. https://doi.org/10.1007/s40618-017-0719-6
  • 11. Spertus J, Horvitz-Lennon M, Abing H, Normand SL. Risk of weight gain for specific antipsychotic drugs. A meta-analysis. NPJ Schizophr. 2018;4:12. doi:10.1038/s41537-018-0053-9
  • 12. Verrotti A, D’Egidio C, Mohn A, Coppola G, Chiarelli F. Weight gain following treatment with valproic acid: Pathogenetic mechanisms and clinical implications. Obes. Rev. 2011;12(5):e32–e43. https://doi.org/10.1111/j.1467-789X.2010.00800.x
  • 13. Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquié M. Pancreatic Insulin Content Regulation by the Estrogen Receptor. Endocrine disruptors and the fetal origin of diseases, PLoS ONE. 2008;3(4). https://doi.org/10.1371/journal.pone.0002069
  • 14. Kristensen DM, Skalkam ML, Audouze K, Lesne L, Desdo-its-Lethimonier C, Frederiksen H, et al. Many putative endocrine disruptors ınhibit prostaglandin synthesis. Envıron Health Persp. 2011;119(4):534-541. https://doi.org/10.1289/ehp.1002635
  • 15. Iyer, P., Abadilla K, Dobs A. Substances of abuse and their hormonal effects. In: el-Guebaly N, Carra G, Galanter M, editors. Textbook of addiction treatment: International Perspectives, Springer, Milano; 2015.p.1811-1831. https://doi.org/10.1007/978-88-470-5322-9_160
  • 16. Iguchi T, Watanabe H, Katsu Y. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and in-vertebrates. Envıron Health Persp. 2006;114:101–105. https://doi.org/10.1289/ehp.8061
  • 17. Wang YF, Pan MM, Yu X, Xu L. The recent advances of fluorescent sensors based on molecularly ımprinted fluorescent nanoparticles for pharmaceutical analysis Curr. Med. Sci. 2020;40(3) 407–421. https://doi.org/10.1007/s11596-020-2195-z
  • 18. Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4. https://doi.org/10.1016/j.talo.2021.100072
  • 19. Poole CF, Poole SK. Principles and practice of solid-phase extraction. In: D. Barcelo, editor. Sampling and Sample Preparation for Field and Laboratory. Chapter 12. 37. Compr. Anal. Chem. Elsevier; 2002. p. 341-387 https://doi.org/10.1016/B978-0-12-381373-2.00041-7
  • 20. Bahrania S, Aslanib R, Hashemic R, Mousavid S, Ghaedia M. Introduction to molecularly imprinted polymer. In: Hubbard AT, editor. Interface Science and Technology. Chapter 7. 33. Elsevıer; 2021. p. 511-556 https://doi.org/10.1016/B978-0-12-818805-7.00006-0
  • 21. Altammar K. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1155622
  • 22. Bangal M, Ashtaputre S, Marathe S, Ethıraj A, Hebalkar N, Gosavı SW, et al. Semiconductor nanoparticles. Hyperfine Interact. 2005;160:81-84 https://doi.org/10.1007/s10751-005-9151-y
  • 23. Cotta MA. Quantum Dots and Their Applications: What Lies Ahead?. ACS Apply. Nano Mater. 2020;3(6):4920-4924 https://doi.org/10.1021/acsanm.0c01386
  • 24. Agarwal K, Rai H, Mondal S. Quantum dots: An overview of synthesis, properties, and applications. Mater. Res. Express. 2023;10(6). https://doi.org/10.1088/2053-1591/acda17
  • 25. Martin-Esteban A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC Trends Anal. Chem. 2013;45:169–181. doi: 10.1016/j.trac.2012.09.023.
  • 26. Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47(15):5574–5587. https://doi.org/10.1039/c7cs00854f
  • 27. Wulff G, Vietmeier J. Enzyme-analogue built polymers, 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Die Makromol Chem 1989;190(7):1727–1735. https://doi.org/10.1002/macp.1989.021900724
  • 28. Wulff G, Wolf G. Zur Chemie von Haftgruppen, VI. Über die Eignung verschiedener Aldehyde und Ketone als Haftgruppen für Monoalkohole. Chem Ber. 1986;119(6):1876–1889. https://doi.org/10.1002/cber.19861190610
  • 29. Shea KJ, Dougherty TK. Molecular recognition on synthetic amorphous surfaces. the influence of functional group positioning on the effectiveness of molecular recognition. J Am Chem Soc. 1986;108:1091–1093. https://doi.org/10.1021/ja00265a046
  • 30. Wulff G, Schauhoff S. Enzyme-analog-built polymers. 27. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org Chem. 1991;56(1):395–400. https://doi.org/10.1021/jo00001a071
  • 31. Hashim SNNS, Boysen RI, Schwarz LJ, Danylec B, Hearn MTW. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J Chromatogr A. 2014; 1359: 35-43. https://doi.org/10.1016/j.chroma.2014.07.034
  • 32. Takeuchi T, Matsui J. Molecular imprinting: an approach to “ tailor-made ” synthetic polymers with biomimetic functi-ons. Acta Polym. 1996; 47: 471-480. https://doi.org/10.1002/actp.1996.010471101
  • 33. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN. A new method for the Introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc. 1995;117(27): 7105-7111. https://doi.org/10.1021/ ja00132a01034.
  • 34. Farooq S, Nie J, Cheng Y, Yan Z, Li J, Bacha SA. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst. 2018;143(17):3971–3989. https://doi.org/10.1039/c8an00907d
  • 35. Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4:100072. https://doi.org/10.1016/j.talo.2021.100072
  • 36. Yang Y, Shen X. Preparation and application of molecularly imprinted polymers for flavonoids: Review and perspective. Molecules. 2022;27(21):7355. https://doi.org/10.3390/molecules27217355
  • 37. Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules. 2021;26(21):6515. ttps://doi.org/10.3390/molecules26216515
  • 38. Yang K, Berg MM, Zhao C, Ye L. One-Pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules. 2009;42(22):8739–8746. https://doi.org/10.1021/ma901761z
  • 39. Hungenberg K.D, Jahns E. Trends in emulsion polymerization processes from an industrial perspective. Adv. Polym. Sci. 2017;280:195–214. https://doi.org/10.1007/12_2017_14
  • 40. Zuo J, Ma P, Li Z, Zhang Y, Xiao D, Wu H, et al. Application of molecularly imprinted polymers in plant natural products: Current progress and future perspectives. Macromol Mater Eng. 2023;308(3):2200499. https://doi.org/10.1002/mame.202200499
  • 41. Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, et al. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. Environ Chem Let. 2022;20(4):2629-2664. https://doi.org/10.1007/s10311-022-01439-4
  • 42. Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael I. H. Nanomaterial by sol-gel method: synthesis and application. Advances in materials science and engineering, 2021;2021(1). https://doi.org/10.1155/2021/5102014
  • 43. Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: D Barceló, editör. Mip Synthesis, Characteristics and Analytical Application. 86. Compr. Anal. Chem. 2019;86:17-40. https://doi.org/10.1016/bs.coac.2019.05.011
  • 44. de Aquino SF, Brandt EMF, Bottrel SEC, Gomes FBR, Silva SDQ. Occurrence of pharmaceuticals and endocrine disrupting compounds in Brazilian water and the risks they may represent to human health. J. Environ. Public Health. 2021;18(22):11765. https://doi.org/10.3390/ijerph182211765
  • 45. Albert O, Desdoits-Lethimonier C, Lesné L, Legrand A, Guillé F, Bensalah K. Paracetamol, aspirin and indomethacin display endocrine disrupting properties in the adult human testis in vitro. Hum Reprod. 2013;28(7):1890-1898. doi:10.1093/humrep/det112
  • 46. Mendonça LL, Khamashta MA, Nelson-Piercy C, Hunt BJ, Hughes GRV. Non-steroidal anti-inflammatory drugs as a possible cause for reversible infertility. Rheumatology. 2000;39(8):880-882. doi:10.1093/romatoloji/39.8.880
  • 47. Montaseri H, Forbes P. Molecularly imprinted polymer coated quantum dots for fluorescence sensing of acetaminophen. Mater. Today Commun. 2018;17:480-492. https://doi.org/10.1016/j.mtcomm.2018.10.007
  • 48. Li K, Zhang M, Ye X, Zhang Y, Li G, Fu R, et al. Highly sensitive and selective detection of naproxen via molecularly imprinted carbon dots as a fluorescent sensor. RSC Adv. 2021;11(46):29073-29079. https://doi.org/10.1039/D1RA04817A
  • 49. Dehghani Z, Akhond M, Absalan G. Carbon quantum dots embedded silica molecular imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers. Microchem. J. 2021;160:105723. https://doi.org/10.1016/j.mic-roc.2020.105723
  • 50. Chen S, Zhou S, Fu J, Tang S, Wu X, Zhao P, et al. A near infrared fluorescence imprinted sensor based on zinc oxide nanorods for rapid determination of ketoprofen. Analytical Methods. 2021;13(25):2836-2846. https://doi.org/10.1039/D1AY00555C
  • 51. Bhogal S, Kaur K, Maheshwari S, Malik AK. Surface molecularly imprinted carbon dots based core-shell material for selective fluorescence sensing of ketoprofen. J Fluoresc. 2019;29:145-154. https://doi.org/10.1007/s10895-018-2322-4
  • 52. Wei X, Zhou Z, Hao T, Xu Y, Li H, Lu K. et al. Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers Microchim Acta. 2015;182:1527–1534. https://doi.org/10.1007/s00604-015-1463-2
  • 53. Tawfika S, Huya B, Sharipova M, Al Abd-Elaal A, Leea Y. Enhanced fluorescence of CdTe quantum dots capped with a novel nonionic alginate for selective optosensing of ibuprofen. Sensor Actuat B-Chem. 2018;256:243-250. https://doi.org/10.1016/j.snb.2017.10.092
  • 54. Sohrabi N, Amini-Fazl M, Mohammadi R. Adsorption and detection tramadol in aqueous solution by fluorescentmagnetic molecularly imprinting polymers. J. Taiwan Inst. Chem. 2024;155:105314. https://doi.org/10.1016/j.jtice.2023.105314
  • 55. Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment–pharmacological mechanisms. Pharmacol Therapeut. 2010;125(1):169-179. https://doi.org/10.1016/j.pharmthera.2009.10.010
  • 56. Khalil RB, Richa S. Thyroid adverse effects of psychotropic drugs: a review. Clın Neuropharmacol. 2011;34(6):248-255. doı: 10.1097/WNF.0b013e31823429a7
  • 57. Ensafi A, Zakery M, Rezaei B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer. Spectrochım Acta A. 2019;206:460-465. https://doi.org/10.1016/j.saa.2018.08.040
  • 58. Dalkilic EB. Effects of antiepileptic drugs on hormones. Neuroscı Lett. 2021;754:135800. https://doi.org/10.1016/j.neulet.2021.135800
  • 59. Shariati R, Rezaei B, Jamei HR, Ensafi A. Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta. 2019;194:143–149. https://doi.org/10.1016/j.talanta.2018.09.069
  • 60. Onslev J, Fiorenza M, Thomassen M, Havelund J, Bangsbo J, Færgeman N. Beta 2-agonist impairs muscle insulin sensitivity in persons with insulin resistance. J Clın Endocr Metab. 2025;110(1):275-288. doi: 10.1210/clinem/dgae381
  • 61. Raksawong P, Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O. A hybrid molecularly imprinted polymer coated quantum dot nanocomposite optosensor for highly sensitive and selective determination of salbutamol in animal feeds and meat samples. Anal Bioanal Chem. 2017;409:4697–4707. https://doi.org/10.1007/s00216-017-0466-8
  • 62. Brass EP. Effects of antihypertensive drugs on endocrine function. Drugs. 1984;27(5):447-458. doi: 10.2165/00003495-198427050-00004
  • 63. Jalili R, Amjadi M. Surface molecular imprinting on silane functionalized carbon dots for selective recognition of nifedipine. RSC Adv. 2015;5:90. https://doi.org/10.1039/C5RA12189B
  • 64. Ensafi A, Kazemifard N, Rezaei B. Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots. Sensor Actuat B-Chem. 2017;252:846-853. https://doi.org/10.1016/j.snb.2017.06.078
  • 65. Mondillo C, Varela ML, Abiuso AMB, Vázquez R. Potential negative effects of anti-histamines on male reproductive function. Reproduction. 2018;155(5):R221-R227. https://doi.org/10.1530/REP-17-0685.
  • 66. Cui Y, Su A, Feng J, Dong W, Li J, Wang H. Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selective and sensitive determination of cetirizine in saliva and urine. Spectrochım Acta A. 2022;264. https://doi.org/10.1016/j.saa.2021.120293
  • 67. Ensafi A, Zakery M, Rezaei B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sensor Actuat B-Chem. 2018;257:889-896. https://doi.org/10.1016/j.snb.2017.11.050
  • 68. Kadowaki T, Hagura R, Kajinuma H, Kuzuya N, Yoshida S. Chlorpropamide-induced hyponatremia: incidence and risk factors. Diabetes Care. 1983;6:468–71. doi: 10.2337/diaca-re.6.5.468
  • 69. Gazizadeh M, Dehghan G, Soleymani J. A dual-emission ratiometric fluorescent biosensor for ultrasensitive detection of glibenclamide using S-CDs/CdS quantum dots. Spectrochım Acta A. 2023;297:122714. https://doi.org/10.1016/j.saa.2023.122714

Year 2025, Volume: 45 Issue: 2, 175 - 187, 01.06.2025
https://doi.org/10.52794/hujpharm.1639507

Abstract

References

  • 1. Son E, Kwon KH. How body burden from exposure to endocrine disruptors effects accelerated aging?. Environ Res Tec. 2023;6(4):383-390. https://doi.org/10.35208/ert.1334434
  • 2. Sabir S, Akhtar MF, Saleem A. Endocrine disruption as an adverse effect of non-endocrine targeting pharmaceuticals. Envıron Scı Pollut R. 2019;26:1277–1286. https://doi.org/10.1007/s11356-018-3774-4
  • 3. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms and perspectives. Toxicol Appl Pharm. 2013;268(2):157–177. https://doi.org/10.1016/j.taap.2013.01.025
  • 4. Perng W, Cantoral A, Soria-Contreras D, Betanzos-Robledo L, Kordas K, Liu Y, et al. Exposure to obesogenic endocrine disrupting chemicals and obesity among youth of Latino or Hispanic origin in the United States and Latin America: A lifecourse perspective. Obes. Rev. 2021;22(S3). https://doi.org/10.1111/obr.13245
  • 5. Güntürk A. Güncel Obezojenler. In: Kadiroğlu A.K, editor. Güncel Genel Dahiliye Çalışmaları. Chapter 4. 2022. p. 35-47.
  • 6. Rato L, Sousa AC. The impact of endocrine-disrupting chemicals in male fertility: focus on the action of obesogens. J. Xenobiotics, 2021;11(4):163-196. https://doi.org/10.3390/jox11040012
  • 7. Mascarenhas C, Sousa ACA, Rato L. Effects of Pharmaceutical Substances with Obesogenic Activity on Male Reproducti-ve Health. Int. J. Mol. Sci. Int. J. Mol. Sci. 2024; 25(4). https://doi.org/10.3390/ijms25042324
  • 8. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. New Eng. J. Med. 2006;355:2427–2443. doi: 10.1056/NEJMoa066224
  • 9. Messerli FH, Bell DSH, Fonseca V, Katholi RE, McGill JB, Phillips RA, et al. Body weight changes with β-blocker use: Results from GEMINI. Am. J. Med. 2007;120(7): 610-615. doi:10.1016/j.amjmed.2006.10.017
  • 10. Verhaegen AA, Van Gaal LF. Drug-induced obesity and its metabolic consequences: A review with a focus on mechanisms and possible therapeutic options. J. Endocrinol. Investig. 2017;40(11):1165–1174. https://doi.org/10.1007/s40618-017-0719-6
  • 11. Spertus J, Horvitz-Lennon M, Abing H, Normand SL. Risk of weight gain for specific antipsychotic drugs. A meta-analysis. NPJ Schizophr. 2018;4:12. doi:10.1038/s41537-018-0053-9
  • 12. Verrotti A, D’Egidio C, Mohn A, Coppola G, Chiarelli F. Weight gain following treatment with valproic acid: Pathogenetic mechanisms and clinical implications. Obes. Rev. 2011;12(5):e32–e43. https://doi.org/10.1111/j.1467-789X.2010.00800.x
  • 13. Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquié M. Pancreatic Insulin Content Regulation by the Estrogen Receptor. Endocrine disruptors and the fetal origin of diseases, PLoS ONE. 2008;3(4). https://doi.org/10.1371/journal.pone.0002069
  • 14. Kristensen DM, Skalkam ML, Audouze K, Lesne L, Desdo-its-Lethimonier C, Frederiksen H, et al. Many putative endocrine disruptors ınhibit prostaglandin synthesis. Envıron Health Persp. 2011;119(4):534-541. https://doi.org/10.1289/ehp.1002635
  • 15. Iyer, P., Abadilla K, Dobs A. Substances of abuse and their hormonal effects. In: el-Guebaly N, Carra G, Galanter M, editors. Textbook of addiction treatment: International Perspectives, Springer, Milano; 2015.p.1811-1831. https://doi.org/10.1007/978-88-470-5322-9_160
  • 16. Iguchi T, Watanabe H, Katsu Y. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and in-vertebrates. Envıron Health Persp. 2006;114:101–105. https://doi.org/10.1289/ehp.8061
  • 17. Wang YF, Pan MM, Yu X, Xu L. The recent advances of fluorescent sensors based on molecularly ımprinted fluorescent nanoparticles for pharmaceutical analysis Curr. Med. Sci. 2020;40(3) 407–421. https://doi.org/10.1007/s11596-020-2195-z
  • 18. Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4. https://doi.org/10.1016/j.talo.2021.100072
  • 19. Poole CF, Poole SK. Principles and practice of solid-phase extraction. In: D. Barcelo, editor. Sampling and Sample Preparation for Field and Laboratory. Chapter 12. 37. Compr. Anal. Chem. Elsevier; 2002. p. 341-387 https://doi.org/10.1016/B978-0-12-381373-2.00041-7
  • 20. Bahrania S, Aslanib R, Hashemic R, Mousavid S, Ghaedia M. Introduction to molecularly imprinted polymer. In: Hubbard AT, editor. Interface Science and Technology. Chapter 7. 33. Elsevıer; 2021. p. 511-556 https://doi.org/10.1016/B978-0-12-818805-7.00006-0
  • 21. Altammar K. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1155622
  • 22. Bangal M, Ashtaputre S, Marathe S, Ethıraj A, Hebalkar N, Gosavı SW, et al. Semiconductor nanoparticles. Hyperfine Interact. 2005;160:81-84 https://doi.org/10.1007/s10751-005-9151-y
  • 23. Cotta MA. Quantum Dots and Their Applications: What Lies Ahead?. ACS Apply. Nano Mater. 2020;3(6):4920-4924 https://doi.org/10.1021/acsanm.0c01386
  • 24. Agarwal K, Rai H, Mondal S. Quantum dots: An overview of synthesis, properties, and applications. Mater. Res. Express. 2023;10(6). https://doi.org/10.1088/2053-1591/acda17
  • 25. Martin-Esteban A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC Trends Anal. Chem. 2013;45:169–181. doi: 10.1016/j.trac.2012.09.023.
  • 26. Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47(15):5574–5587. https://doi.org/10.1039/c7cs00854f
  • 27. Wulff G, Vietmeier J. Enzyme-analogue built polymers, 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Die Makromol Chem 1989;190(7):1727–1735. https://doi.org/10.1002/macp.1989.021900724
  • 28. Wulff G, Wolf G. Zur Chemie von Haftgruppen, VI. Über die Eignung verschiedener Aldehyde und Ketone als Haftgruppen für Monoalkohole. Chem Ber. 1986;119(6):1876–1889. https://doi.org/10.1002/cber.19861190610
  • 29. Shea KJ, Dougherty TK. Molecular recognition on synthetic amorphous surfaces. the influence of functional group positioning on the effectiveness of molecular recognition. J Am Chem Soc. 1986;108:1091–1093. https://doi.org/10.1021/ja00265a046
  • 30. Wulff G, Schauhoff S. Enzyme-analog-built polymers. 27. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org Chem. 1991;56(1):395–400. https://doi.org/10.1021/jo00001a071
  • 31. Hashim SNNS, Boysen RI, Schwarz LJ, Danylec B, Hearn MTW. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J Chromatogr A. 2014; 1359: 35-43. https://doi.org/10.1016/j.chroma.2014.07.034
  • 32. Takeuchi T, Matsui J. Molecular imprinting: an approach to “ tailor-made ” synthetic polymers with biomimetic functi-ons. Acta Polym. 1996; 47: 471-480. https://doi.org/10.1002/actp.1996.010471101
  • 33. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN. A new method for the Introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc. 1995;117(27): 7105-7111. https://doi.org/10.1021/ ja00132a01034.
  • 34. Farooq S, Nie J, Cheng Y, Yan Z, Li J, Bacha SA. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst. 2018;143(17):3971–3989. https://doi.org/10.1039/c8an00907d
  • 35. Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4:100072. https://doi.org/10.1016/j.talo.2021.100072
  • 36. Yang Y, Shen X. Preparation and application of molecularly imprinted polymers for flavonoids: Review and perspective. Molecules. 2022;27(21):7355. https://doi.org/10.3390/molecules27217355
  • 37. Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules. 2021;26(21):6515. ttps://doi.org/10.3390/molecules26216515
  • 38. Yang K, Berg MM, Zhao C, Ye L. One-Pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules. 2009;42(22):8739–8746. https://doi.org/10.1021/ma901761z
  • 39. Hungenberg K.D, Jahns E. Trends in emulsion polymerization processes from an industrial perspective. Adv. Polym. Sci. 2017;280:195–214. https://doi.org/10.1007/12_2017_14
  • 40. Zuo J, Ma P, Li Z, Zhang Y, Xiao D, Wu H, et al. Application of molecularly imprinted polymers in plant natural products: Current progress and future perspectives. Macromol Mater Eng. 2023;308(3):2200499. https://doi.org/10.1002/mame.202200499
  • 41. Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, et al. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. Environ Chem Let. 2022;20(4):2629-2664. https://doi.org/10.1007/s10311-022-01439-4
  • 42. Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael I. H. Nanomaterial by sol-gel method: synthesis and application. Advances in materials science and engineering, 2021;2021(1). https://doi.org/10.1155/2021/5102014
  • 43. Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: D Barceló, editör. Mip Synthesis, Characteristics and Analytical Application. 86. Compr. Anal. Chem. 2019;86:17-40. https://doi.org/10.1016/bs.coac.2019.05.011
  • 44. de Aquino SF, Brandt EMF, Bottrel SEC, Gomes FBR, Silva SDQ. Occurrence of pharmaceuticals and endocrine disrupting compounds in Brazilian water and the risks they may represent to human health. J. Environ. Public Health. 2021;18(22):11765. https://doi.org/10.3390/ijerph182211765
  • 45. Albert O, Desdoits-Lethimonier C, Lesné L, Legrand A, Guillé F, Bensalah K. Paracetamol, aspirin and indomethacin display endocrine disrupting properties in the adult human testis in vitro. Hum Reprod. 2013;28(7):1890-1898. doi:10.1093/humrep/det112
  • 46. Mendonça LL, Khamashta MA, Nelson-Piercy C, Hunt BJ, Hughes GRV. Non-steroidal anti-inflammatory drugs as a possible cause for reversible infertility. Rheumatology. 2000;39(8):880-882. doi:10.1093/romatoloji/39.8.880
  • 47. Montaseri H, Forbes P. Molecularly imprinted polymer coated quantum dots for fluorescence sensing of acetaminophen. Mater. Today Commun. 2018;17:480-492. https://doi.org/10.1016/j.mtcomm.2018.10.007
  • 48. Li K, Zhang M, Ye X, Zhang Y, Li G, Fu R, et al. Highly sensitive and selective detection of naproxen via molecularly imprinted carbon dots as a fluorescent sensor. RSC Adv. 2021;11(46):29073-29079. https://doi.org/10.1039/D1RA04817A
  • 49. Dehghani Z, Akhond M, Absalan G. Carbon quantum dots embedded silica molecular imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers. Microchem. J. 2021;160:105723. https://doi.org/10.1016/j.mic-roc.2020.105723
  • 50. Chen S, Zhou S, Fu J, Tang S, Wu X, Zhao P, et al. A near infrared fluorescence imprinted sensor based on zinc oxide nanorods for rapid determination of ketoprofen. Analytical Methods. 2021;13(25):2836-2846. https://doi.org/10.1039/D1AY00555C
  • 51. Bhogal S, Kaur K, Maheshwari S, Malik AK. Surface molecularly imprinted carbon dots based core-shell material for selective fluorescence sensing of ketoprofen. J Fluoresc. 2019;29:145-154. https://doi.org/10.1007/s10895-018-2322-4
  • 52. Wei X, Zhou Z, Hao T, Xu Y, Li H, Lu K. et al. Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers Microchim Acta. 2015;182:1527–1534. https://doi.org/10.1007/s00604-015-1463-2
  • 53. Tawfika S, Huya B, Sharipova M, Al Abd-Elaal A, Leea Y. Enhanced fluorescence of CdTe quantum dots capped with a novel nonionic alginate for selective optosensing of ibuprofen. Sensor Actuat B-Chem. 2018;256:243-250. https://doi.org/10.1016/j.snb.2017.10.092
  • 54. Sohrabi N, Amini-Fazl M, Mohammadi R. Adsorption and detection tramadol in aqueous solution by fluorescentmagnetic molecularly imprinting polymers. J. Taiwan Inst. Chem. 2024;155:105314. https://doi.org/10.1016/j.jtice.2023.105314
  • 55. Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment–pharmacological mechanisms. Pharmacol Therapeut. 2010;125(1):169-179. https://doi.org/10.1016/j.pharmthera.2009.10.010
  • 56. Khalil RB, Richa S. Thyroid adverse effects of psychotropic drugs: a review. Clın Neuropharmacol. 2011;34(6):248-255. doı: 10.1097/WNF.0b013e31823429a7
  • 57. Ensafi A, Zakery M, Rezaei B. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer. Spectrochım Acta A. 2019;206:460-465. https://doi.org/10.1016/j.saa.2018.08.040
  • 58. Dalkilic EB. Effects of antiepileptic drugs on hormones. Neuroscı Lett. 2021;754:135800. https://doi.org/10.1016/j.neulet.2021.135800
  • 59. Shariati R, Rezaei B, Jamei HR, Ensafi A. Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta. 2019;194:143–149. https://doi.org/10.1016/j.talanta.2018.09.069
  • 60. Onslev J, Fiorenza M, Thomassen M, Havelund J, Bangsbo J, Færgeman N. Beta 2-agonist impairs muscle insulin sensitivity in persons with insulin resistance. J Clın Endocr Metab. 2025;110(1):275-288. doi: 10.1210/clinem/dgae381
  • 61. Raksawong P, Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O. A hybrid molecularly imprinted polymer coated quantum dot nanocomposite optosensor for highly sensitive and selective determination of salbutamol in animal feeds and meat samples. Anal Bioanal Chem. 2017;409:4697–4707. https://doi.org/10.1007/s00216-017-0466-8
  • 62. Brass EP. Effects of antihypertensive drugs on endocrine function. Drugs. 1984;27(5):447-458. doi: 10.2165/00003495-198427050-00004
  • 63. Jalili R, Amjadi M. Surface molecular imprinting on silane functionalized carbon dots for selective recognition of nifedipine. RSC Adv. 2015;5:90. https://doi.org/10.1039/C5RA12189B
  • 64. Ensafi A, Kazemifard N, Rezaei B. Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots. Sensor Actuat B-Chem. 2017;252:846-853. https://doi.org/10.1016/j.snb.2017.06.078
  • 65. Mondillo C, Varela ML, Abiuso AMB, Vázquez R. Potential negative effects of anti-histamines on male reproductive function. Reproduction. 2018;155(5):R221-R227. https://doi.org/10.1530/REP-17-0685.
  • 66. Cui Y, Su A, Feng J, Dong W, Li J, Wang H. Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selective and sensitive determination of cetirizine in saliva and urine. Spectrochım Acta A. 2022;264. https://doi.org/10.1016/j.saa.2021.120293
  • 67. Ensafi A, Zakery M, Rezaei B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sensor Actuat B-Chem. 2018;257:889-896. https://doi.org/10.1016/j.snb.2017.11.050
  • 68. Kadowaki T, Hagura R, Kajinuma H, Kuzuya N, Yoshida S. Chlorpropamide-induced hyponatremia: incidence and risk factors. Diabetes Care. 1983;6:468–71. doi: 10.2337/diaca-re.6.5.468
  • 69. Gazizadeh M, Dehghan G, Soleymani J. A dual-emission ratiometric fluorescent biosensor for ultrasensitive detection of glibenclamide using S-CDs/CdS quantum dots. Spectrochım Acta A. 2023;297:122714. https://doi.org/10.1016/j.saa.2023.122714
There are 69 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Analytical Chemistry
Journal Section Review Articles
Authors

Durdane Ozturk This is me 0009-0005-6432-7525

Nuran Gökdere This is me 0009-0008-0254-7786

İsmail Murat Palabıyık 0000-0003-2843-5690

Publication Date June 1, 2025
Submission Date February 13, 2025
Acceptance Date May 13, 2025
Published in Issue Year 2025 Volume: 45 Issue: 2

Cite

Vancouver Ozturk D, Gökdere N, Palabıyık İM. Detection of Endocrine Disrupting Drugs with Quantum Dot Molecularly Imprinted Polymer. HUJPHARM. 2025;45(2):175-87.