Research Article
BibTex RIS Cite
Year 2023, , 11 - 25, 30.06.2023
https://doi.org/10.56484/iamr.1265044

Abstract

Project Number

2010/125

References

  • 1. Beswick RA, Zhang H, Marable D, Catravas JD, Hill WD, Webb RC. Long-Term Antioxidant Administration Attenuates Mineralocorticoid Hypertension and Renal Inflammatory Response. Hypertension. 2001;37(2):781-786. http://www.hypertensionaha.org
  • 2. Titze J, Luft FC. Speculations on salt and the genesis of arterial hypertension. Kidney Int. 2017;91(6):1324-1335.
  • 3. Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol. 2009;297(2):F397-F402.
  • 4. Banday AA, Lokhandwala MF. Renal Dopamine Oxidation and Inflammation in High Salt Fed Rats. J Am Heart Assoc. 2020;9(1):e014977.
  • 5. Moncada S. Nitric oxide: discovery and impact on clinical medicine. J R Soc Med. 1999;92(4):164-169.
  • 6. Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res. 2009;32(8):1103-1108.
  • 7. Granger J, Alexander B. Abnormal pressure-natriuresis in hypertension: role of nitric oxide. Acta Physiol Scand. 2000;168(1):161-168.
  • 8. Yuasa S, Li X, Hitomi H, et al. Sodium sensitivity and sympathetic nervous system in hypertension induced by long-term nitric oxide blockade in rats. Clin Exp Pharmacol Physiol. 2000;27(1-2):18-24.
  • 9. Vapaatalo H, Mervaala E, Nurminen M. Role of endothelium and nitric oxide in experimental hypertension. Physiol Res. 2000;49(1):1-10.
  • 10. Husain K. Interaction of exercise training and chronic NOS inhibition on blood pressure, heart rate, NO and antioxidants in plasma of rats. Pathophysiology. 2003;10(1):47-56.
  • 11. Kopkan L, Majid DS. Superoxide contributes to development of salt sensitivity and hypertension induced by nitric oxide deficiency. Hypertension. 2005;46(4):1026-1031.
  • 12. Güngör B, Akdur AS, Sılan C, Aksulu HE, Şahin O. The Effects of High Salt Diet and Exercise on the Water-Salt Balance and Blood Pressure in Rats. Journal of Scientific Perspectives. 2021;5(1):55-69.
  • 13. Salazar F, Pinilla J, Lopez F, Romero J, Quesada T. Renal effects of prolonged synthesis inhibition of endothelium-derived nitric oxide. Hypertension. 1992;20(1):113-117.
  • 14. Zeng C, Villar VAM, Yu P, Zhou L, Jose PA. Reactive Oxygen Species and Dopamine Receptor Function in Essential Hypertension. Clin Exp Hypertens. 2009;31(2):156-178.
  • 15. Tain YL, Hsu CN. Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants (Basel). 2022;11(3):511.
  • 16. Araujo M, Wilcox CS. Oxidative stress in hypertension: Role of the kidney. Antioxid Redox Signal. 2014;20(1):74-101. doi:10.1089/ars.2013.5259
  • 17. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119-146. doi:10.1089/ars.2016.6665
  • 18. Hsu CN, Tain YL. Regulation of nitric oxide production in the developmental programming of hypertension and kidney disease. Int J Mol Sci. 2019;20(3):681. doi:10.3390/ijms20030681
  • 19. Hong YA, Park CW. Catalytic antioxidants in the kidney. Antioxidants. 2021;10(1):1-22. doi:10.3390/antiox10010130
  • 20. Majid DS, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2007;34(9):946-952.
  • 21. Majid DSA, Prieto MC, Navar LG. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Curr Hypertens Rev. 2015;11(1):38-48.
  • 22. Krzesinski J, Cohen E. Salt, the kidneys, and arterial hypertension. Acta Clin Belg. 2007;62(5):348-357.
  • 23. Surma S, Szyndler A, Narkiewicz K. Salt and arterial hypertension — epidemiological, pathophysiological and preventive aspects. Arterial Hypertension. 2020;24(4):148-158.
  • 24. Elliott P, Stamler J, Nichols R, et al. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Br Med J. 1996;312(7041):1249-1253.
  • 25. Carey RM. Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension. 2001;38(3):297-32.
  • 26. Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol. 2000;62:621-647.
  • 27. Olivares-Hernández A, Figuero-Pérez L, Cruz-Hernandez JJ, Sarmiento RG, Usategui-Martin R, Miramontes-González JP. Dopamine Receptors and the Kidney: An Overview of Health- and Pharmacological-Targeted Implications. Biomolecules. 2021;11(2):254.
  • 28. Qaddumi WN, Jose PA. The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines. 2021;9(2):139.
  • 29. Cuevas S, Villar VA, Jose PA, Armando I. Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci. 2013;14(9):17553-17572. doi:10.3390/ijms140917553
  • 30. Pistoia F, Sacco S, Degan D, Tiseo C, Ornello R, Carolei A. Hypertension and Stroke: Epidemiological Aspects and Clinical Evaluation. High Blood Pressure & Cardiovascular Prevention. 2016;23(1):9-18.
  • 31. Atella V, Mortari AP, Kopinska J, et al. Trends in age-related disease burden and healthcare utilization. Aging Cell. 2019;18(1):e12861.
  • 32. Nista F, Gatto F, Albertelli M, Musso N. Sodium Intake and Target Organ Damage in Hypertension-An Update about the Role of a Real Villain. Int J Environ Res Public Health. 2020;17(8):2811.
  • 33. Shultz P, Tollins J. Adaptation to increased dietary salt intake in the rat. Role of endogenous nitric oxide. J Clin Invest. 1993;91(2):642-650.
  • 34. Tolins JP, Shultz PJ. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int. 1994;46(1):230-236.
  • 35. Bloch J, Qiu C, Erdely A, Baylis C. Inhibition of inducible nitric oxide synthase during high dietary salt intake. Am J Hypertens. 2002;15(3):230-235.
  • 36. Ibarra ME, Borghese MFA, Majowicz MP, et al. Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake. Physiol Rep. 2017;5(6):e13202.
  • 37. Johnson R, Freeman R. Pressure natriuresis in rats during blockade of the L-arginine/nitric oxide pathway. Hypertension. 1992;19(4):333-338.
  • 38. da Silva GM, da Silva MC, Nascimento DVG, et al. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. Biology (Basel). 2021;10(10):1041.
  • 39. Alexander R, Gill Jr J, Yamabe H, Lovenberg W, Keiser H. Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest. 1974;54(1):194-200.
  • 40. DeFeo ML, Jadhav AL, Lokhandwala MF. Dietary Sodium Intake and Urinary Dopamine and Sodium Excretion During the Course of Blood Pressure Development in Dahl Salt-Sensitive and Salt-Resistant Rats. Clin Exp Hypertens. 1987;9(12):2049-2060.
  • 41. Wang Z, Siragy H, Felder R, Carey R. Intrarenal dopamine production and distribution in the rat. Physiological control of sodium excretion. Hypertension. 1997;29(1 Pt 2):228-234.
  • 42. Armando I, Villar VAM, Jose PA. Dopamine and renal function and blood pressure regulation. Compr Physiol. 2011;1(3):1075-1117.
  • 43. Bądzyńska B, Sadowski J. Reinvestigation of the tonic natriuretic action of intrarenal dopamine: comparison of two variants of salt-dependent hypertension and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2021;48(9):1280-1287.

The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration

Year 2023, , 11 - 25, 30.06.2023
https://doi.org/10.56484/iamr.1265044

Abstract

Objective: We aimed to investigate the intrarenal dopamine synthesis efficiency, blood pressure changes and the effects of this system on hypertension developed by NOS inhibition and high salt diet.
Method: Wistar Albino male rats were administered water containing 50mg/L or 100mg/L concentrations of L-NNA, standard rat feed containing 0.8%salt, or 4%high salt alone or with L-NNA for 7days. Blood pressure measurements were made with the tail-cuff method. 24-hour water intake and urine volume were also measured.
Results: Administration of L-NNA or high-salt diet alone for 7days did not cause a change in blood pressure, while their combined administration resulted in a significant increase in blood pressure. Blood pressures were found to be higher in the L-NNA100+HS group compared to the other groups. While the amount of water intake in 24hours did not change, the amount of 24-hour urine was reduced. 24-hour urinary sodium excretion, sodium clearance and GFR was decreased, and 24-hour urine dopamine concentrations were increased.
Conclusion: Co-administration of nitric-oxide inhibitor and high-salt diet failed to prevent renal dopaminergic system blood pressure increase. Despite the increase in dopamine synthesis, intrarenal dopamine activity could not be realized by receptor interaction and it is thought that the increase in blood pressure is caused by the development of renal oxidative stress.

Supporting Institution

Çanakkale Onsekiz Mart University The Scientific Research Projects Coordination Unit

Project Number

2010/125

References

  • 1. Beswick RA, Zhang H, Marable D, Catravas JD, Hill WD, Webb RC. Long-Term Antioxidant Administration Attenuates Mineralocorticoid Hypertension and Renal Inflammatory Response. Hypertension. 2001;37(2):781-786. http://www.hypertensionaha.org
  • 2. Titze J, Luft FC. Speculations on salt and the genesis of arterial hypertension. Kidney Int. 2017;91(6):1324-1335.
  • 3. Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol. 2009;297(2):F397-F402.
  • 4. Banday AA, Lokhandwala MF. Renal Dopamine Oxidation and Inflammation in High Salt Fed Rats. J Am Heart Assoc. 2020;9(1):e014977.
  • 5. Moncada S. Nitric oxide: discovery and impact on clinical medicine. J R Soc Med. 1999;92(4):164-169.
  • 6. Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res. 2009;32(8):1103-1108.
  • 7. Granger J, Alexander B. Abnormal pressure-natriuresis in hypertension: role of nitric oxide. Acta Physiol Scand. 2000;168(1):161-168.
  • 8. Yuasa S, Li X, Hitomi H, et al. Sodium sensitivity and sympathetic nervous system in hypertension induced by long-term nitric oxide blockade in rats. Clin Exp Pharmacol Physiol. 2000;27(1-2):18-24.
  • 9. Vapaatalo H, Mervaala E, Nurminen M. Role of endothelium and nitric oxide in experimental hypertension. Physiol Res. 2000;49(1):1-10.
  • 10. Husain K. Interaction of exercise training and chronic NOS inhibition on blood pressure, heart rate, NO and antioxidants in plasma of rats. Pathophysiology. 2003;10(1):47-56.
  • 11. Kopkan L, Majid DS. Superoxide contributes to development of salt sensitivity and hypertension induced by nitric oxide deficiency. Hypertension. 2005;46(4):1026-1031.
  • 12. Güngör B, Akdur AS, Sılan C, Aksulu HE, Şahin O. The Effects of High Salt Diet and Exercise on the Water-Salt Balance and Blood Pressure in Rats. Journal of Scientific Perspectives. 2021;5(1):55-69.
  • 13. Salazar F, Pinilla J, Lopez F, Romero J, Quesada T. Renal effects of prolonged synthesis inhibition of endothelium-derived nitric oxide. Hypertension. 1992;20(1):113-117.
  • 14. Zeng C, Villar VAM, Yu P, Zhou L, Jose PA. Reactive Oxygen Species and Dopamine Receptor Function in Essential Hypertension. Clin Exp Hypertens. 2009;31(2):156-178.
  • 15. Tain YL, Hsu CN. Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants (Basel). 2022;11(3):511.
  • 16. Araujo M, Wilcox CS. Oxidative stress in hypertension: Role of the kidney. Antioxid Redox Signal. 2014;20(1):74-101. doi:10.1089/ars.2013.5259
  • 17. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119-146. doi:10.1089/ars.2016.6665
  • 18. Hsu CN, Tain YL. Regulation of nitric oxide production in the developmental programming of hypertension and kidney disease. Int J Mol Sci. 2019;20(3):681. doi:10.3390/ijms20030681
  • 19. Hong YA, Park CW. Catalytic antioxidants in the kidney. Antioxidants. 2021;10(1):1-22. doi:10.3390/antiox10010130
  • 20. Majid DS, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2007;34(9):946-952.
  • 21. Majid DSA, Prieto MC, Navar LG. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Curr Hypertens Rev. 2015;11(1):38-48.
  • 22. Krzesinski J, Cohen E. Salt, the kidneys, and arterial hypertension. Acta Clin Belg. 2007;62(5):348-357.
  • 23. Surma S, Szyndler A, Narkiewicz K. Salt and arterial hypertension — epidemiological, pathophysiological and preventive aspects. Arterial Hypertension. 2020;24(4):148-158.
  • 24. Elliott P, Stamler J, Nichols R, et al. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Br Med J. 1996;312(7041):1249-1253.
  • 25. Carey RM. Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension. 2001;38(3):297-32.
  • 26. Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol. 2000;62:621-647.
  • 27. Olivares-Hernández A, Figuero-Pérez L, Cruz-Hernandez JJ, Sarmiento RG, Usategui-Martin R, Miramontes-González JP. Dopamine Receptors and the Kidney: An Overview of Health- and Pharmacological-Targeted Implications. Biomolecules. 2021;11(2):254.
  • 28. Qaddumi WN, Jose PA. The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines. 2021;9(2):139.
  • 29. Cuevas S, Villar VA, Jose PA, Armando I. Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci. 2013;14(9):17553-17572. doi:10.3390/ijms140917553
  • 30. Pistoia F, Sacco S, Degan D, Tiseo C, Ornello R, Carolei A. Hypertension and Stroke: Epidemiological Aspects and Clinical Evaluation. High Blood Pressure & Cardiovascular Prevention. 2016;23(1):9-18.
  • 31. Atella V, Mortari AP, Kopinska J, et al. Trends in age-related disease burden and healthcare utilization. Aging Cell. 2019;18(1):e12861.
  • 32. Nista F, Gatto F, Albertelli M, Musso N. Sodium Intake and Target Organ Damage in Hypertension-An Update about the Role of a Real Villain. Int J Environ Res Public Health. 2020;17(8):2811.
  • 33. Shultz P, Tollins J. Adaptation to increased dietary salt intake in the rat. Role of endogenous nitric oxide. J Clin Invest. 1993;91(2):642-650.
  • 34. Tolins JP, Shultz PJ. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int. 1994;46(1):230-236.
  • 35. Bloch J, Qiu C, Erdely A, Baylis C. Inhibition of inducible nitric oxide synthase during high dietary salt intake. Am J Hypertens. 2002;15(3):230-235.
  • 36. Ibarra ME, Borghese MFA, Majowicz MP, et al. Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake. Physiol Rep. 2017;5(6):e13202.
  • 37. Johnson R, Freeman R. Pressure natriuresis in rats during blockade of the L-arginine/nitric oxide pathway. Hypertension. 1992;19(4):333-338.
  • 38. da Silva GM, da Silva MC, Nascimento DVG, et al. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. Biology (Basel). 2021;10(10):1041.
  • 39. Alexander R, Gill Jr J, Yamabe H, Lovenberg W, Keiser H. Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest. 1974;54(1):194-200.
  • 40. DeFeo ML, Jadhav AL, Lokhandwala MF. Dietary Sodium Intake and Urinary Dopamine and Sodium Excretion During the Course of Blood Pressure Development in Dahl Salt-Sensitive and Salt-Resistant Rats. Clin Exp Hypertens. 1987;9(12):2049-2060.
  • 41. Wang Z, Siragy H, Felder R, Carey R. Intrarenal dopamine production and distribution in the rat. Physiological control of sodium excretion. Hypertension. 1997;29(1 Pt 2):228-234.
  • 42. Armando I, Villar VAM, Jose PA. Dopamine and renal function and blood pressure regulation. Compr Physiol. 2011;1(3):1075-1117.
  • 43. Bądzyńska B, Sadowski J. Reinvestigation of the tonic natriuretic action of intrarenal dopamine: comparison of two variants of salt-dependent hypertension and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2021;48(9):1280-1287.
There are 43 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Clinical Sciences
Journal Section Original Research Paper
Authors

Buket Güngör 0000-0002-5802-1635

Ender Tekeş 0000-0001-5375-4621

Coşkun Silan 0000-0002-8352-6571

Seçil Afet Akdur This is me 0000-0001-5418-2442

Dilek Ülker Çakır This is me 0000-0002-8796-6363

Ertan Eşsizoğlu This is me 0000-0001-5418-2442

Hakkı Engin Aksulu This is me 0000-0001-5418-2442

Project Number 2010/125
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Güngör, B., Tekeş, E., Silan, C., Akdur, S. A., et al. (2023). The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration. International Archives of Medical Research, 15(1), 11-25. https://doi.org/10.56484/iamr.1265044
AMA Güngör B, Tekeş E, Silan C, Akdur SA, Ülker Çakır D, Eşsizoğlu E, Aksulu HE. The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration. IAMR. June 2023;15(1):11-25. doi:10.56484/iamr.1265044
Chicago Güngör, Buket, Ender Tekeş, Coşkun Silan, Seçil Afet Akdur, Dilek Ülker Çakır, Ertan Eşsizoğlu, and Hakkı Engin Aksulu. “The Effects of Renal Dopaminergic System on the Development of Hypertension With High Salt Diet and L-NNA Administration”. International Archives of Medical Research 15, no. 1 (June 2023): 11-25. https://doi.org/10.56484/iamr.1265044.
EndNote Güngör B, Tekeş E, Silan C, Akdur SA, Ülker Çakır D, Eşsizoğlu E, Aksulu HE (June 1, 2023) The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration. International Archives of Medical Research 15 1 11–25.
IEEE B. Güngör, E. Tekeş, C. Silan, S. A. Akdur, D. Ülker Çakır, E. Eşsizoğlu, and H. E. Aksulu, “The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration”, IAMR, vol. 15, no. 1, pp. 11–25, 2023, doi: 10.56484/iamr.1265044.
ISNAD Güngör, Buket et al. “The Effects of Renal Dopaminergic System on the Development of Hypertension With High Salt Diet and L-NNA Administration”. International Archives of Medical Research 15/1 (June 2023), 11-25. https://doi.org/10.56484/iamr.1265044.
JAMA Güngör B, Tekeş E, Silan C, Akdur SA, Ülker Çakır D, Eşsizoğlu E, Aksulu HE. The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration. IAMR. 2023;15:11–25.
MLA Güngör, Buket et al. “The Effects of Renal Dopaminergic System on the Development of Hypertension With High Salt Diet and L-NNA Administration”. International Archives of Medical Research, vol. 15, no. 1, 2023, pp. 11-25, doi:10.56484/iamr.1265044.
Vancouver Güngör B, Tekeş E, Silan C, Akdur SA, Ülker Çakır D, Eşsizoğlu E, Aksulu HE. The effects of renal dopaminergic system on the development of hypertension with high salt diet and L-NNA administration. IAMR. 2023;15(1):11-25.

All articles published by DUJE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. 24456