Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 68 - 79, 15.08.2022
https://doi.org/10.35860/iarej.1058369

Öz

Proje Numarası

project number 211104011

Kaynakça

  • 1. Elci, H., and Goker, K. A., Comparison of Earthquake Codes (TEC 2007 and TBEC 2018) In Terms of Seismic Performance of RC Columns, international Journal of Scientific and Technological Research, 2018. 4 (6): p. 9-21.
  • 2. Kaya, M. P., Mevcut Betonarme Binaların Deprem Performanslarının Belirlenmesinde Doğrusal ve Doğrusal Olmayan Yöntemlerin Karşılaştırılması Üzerine Sayısal Bir İnceleme, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2006.
  • 3. Aydemir, C., Kırçıl, M. S., Hancıoğlu, B., and Zorbozan, M., Betonarme Kolonların Hasar Sınır Eğriliklerinin Belirlenmesi, İMO Teknik Dergi, 2011. 22 (109): p. 5613-5642.
  • 4. Aldemir, M. A., Kazaz, İ., Evaluation Of Deformation Limits in Codes for Reinforced Concrete Columns, Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences, 2018. 6: p. 225 - 233.
  • 5. Bouzid, H., and Kassoul, A, Curvature Ductility of High Strength Concrete Beams According to Eurocode 2, Structural Engineering and Mechanics, 2016. 58(1): p. 1–19.
  • 6. Bouzid, H., and Kassoul, A, Curvature Ductility Prediction of High Strength Concrete Beams, Structural Engineering and Mechanics, 2018. 66(2): p. 195–201.
  • 7. Chen, XC., Bai, Z.Z., and Au, FTK, Effect of Confinement on Flexural Ductility Design of Concrete Beams, Computers and Concrete, 2017. 20(2): p. 129–143.
  • 8. Elçi, H., Experimental Investigation of Section Damage Limits for Reinforced Columns with Low Strength Concrete According to TBSC 2018, Bitlis Eren University Journal of Science and Technology, 2021, 10 (4): p. 1373-1385.
  • 9. ASCE Standard, 41, Seismic Evaluation and Retrofit of Existing Buildings, (ASCE/SEI 41-17), Published by the American Society of Civil Engineers, Reston, Virginia, pp. 20191-4382, USA, 2017.
  • 10. Eurocode 8. Design of structures for earthquake resistance: Part 1: General rules, seismic actions and rules for buildings, BS EN 1998-1:2004.
  • 11. TBSC, Specification for Buildings to be Built in Seismic Zones, 2018, Ministry of Public Works and Settlement Government of the Republic of Turkey.
  • 12. Sucuoğlu, H, Performans Esaslı Deprem Mühendisliği, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 14–16 Ekim, 2015. İzmir.
  • 13. Aydemir, C., Aydemir, M. E., Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle Irdelenmesi. İMO Teknik Dergi, 2017. 28 (4): p. 8023-8049.
  • 14. Foroughi, S., Jamal, R., and Yüksel, S. B., Effect of Confining Reinforcement and Axial Load In Determining Deformation Based Damage Limits, Journal of Engineering Sciences and Design, 2020. 8 (4): p. 1042-1052.
  • 15. Işıltan, Ö., Betonarme Kolonlar için TDY 2007, EUROCODE 8 ve FEMA 356 ile Yapılan Performans Değerlendirmelerinin Deney Sonuçlarıyla Karşılaştırılması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 1-159, 2010.
  • 16. Acun, B., Sucuoğlu, H., Betonarme Kolonların Şekildeğiştirme Performans Sınırlarının Deneysel Gözlemlerle Değerlendirilmesi, İMO Teknik Dergi, 2011. 22 (108): p. 5523-5541.
  • 17. Yavaş, A., Türker, K., Experimental Investigation of Strain Based Damage Limits in Turkish Earthquake Code for RC Columns. SDU International Technological Sciences, 2012. 4 (2): p.102-114.
  • 18. Hasgül, U., Yavaş, A. Türker, K., Terzi, M., Birol, T., DBYBHY-2007’de Tanımlanan Hasar Kriterlerinin Betonarme Kolon Elemanlar için İncelenmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 2016. 21 (2): p. 499-514.
  • 19. Ulutaş, H., DBYBHY (2007) ve TBDY (2018) Deprem Yönetmeliklerinin Kesit Hasar Sınırları Açısından Kıyaslanması, Avrupa Bilim ve Teknoloji Dergisi, 2019. 17: p.351-359.
  • 20. Türker, K., Türkiye Deprem Yönetmeliğindeki Performans Esaslı Statik Yöntemlerin Düşey Rijitlik Düzensizliği Bulunan Çerçeveler Üzerinde Karşılaştırılması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2014. 20 (3): p. 70-77.
  • 21. Kazaz, İ., and Gülkan P., Süneklik Düzeyi Yüksek Betonarme Perdelerdeki Hasar Sınırları, İMO Teknik Dergi, 2012. 23 (114): p. 6113-6140.
  • 22. Yakut, A., and Solmaz, T, Performance Based Displacement Limits for Reinforced Concrete Columns Under Flexure, 15 WCEE, 2012. LISBOA.
  • 23. Foroughi, S., Yüksel, S. B., Investigation of Deformation-Based Damage Limits of RC Columns for Different Seismic Codes, Journal of Engineering Research (JER), 2021. Online First Articles.
  • 24. Foroughi, S., and Yüksel, S.B, Investigation of Non-linear Behavior of High Ductility Reinforced Concrete Shear Walls, International Advanced Researches and Engineering Journal, 2020. 4(2): p. 116–128.
  • 25. Foroughi, S., and Yüksel, S. B., Deformation Based Damage Limits of the Ductile Reinforced Concrete Shear Walls, Journal of Advanced Research in Natural and Applied Sciences, 2021. 7 (2): p. 244–255.
  • 26. Foroughi, S., and Yüksel S. B., Investigation of Deformation Based Damage Limits of Reinforced Concrete Column, International Journal of Engineering Research and Development, 2019. 11(2): p. 584-601.
  • 27. Sasani, M., Life-Safety And Near-Collapse Capacity Models For Seismic Shear Behavior of Reinforced Concrete Columns, ACI Structural Journal, 2007. 104 (1): p. 30-38.
  • 28. Mander, J.B., Priestley, M.J.N., and Park, R, Theoretical Stress–Strain Model for Confined Concrete, Journal of Structural Engineering (ASCE), 1988. 114(8): p.1804–1826.
  • 29. SAP 2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • 30. Zhong, J., Ni, M., Hu, H., Yuan, W., Yuan, H. and Pang, Y., Uncoupled Multivariate Power Models for Estimating Performance-Based Seismic Damage States of Column Curvature Ductility, Structures, 2022. 36: p. 752-764.
  • 31. Liu, X., Jiang, H., Ye, Y. and Guo, Z., Deformation-Based Performance Index of Corroded Reinforced Concrete Beams, Journal of Building Engineering, 2021. 34 (2): 101940.
  • 32. Foroughi, S., Jamal, R., and Yüksel, S. B., Effect of Confining Reinforcement and Axial Load Level on Curvature Ductility and Effective Stiffness of Reinforced Concrete Columns, El-Cezerî Journal of Science and Engineering (ECJSE), 2020. 7 (3): p. 1309 – 1319.
  • 33. Paulay, T., and Priestley, M.J.N, Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, Inc, 1992. New York, USA.
  • 34. Özdemir, M. A., Kazaz, İ., and Özkaya, S. G., Evaluation and Comparison of Ultimate Deformation Limits for Reinforced Concrete Columns, Engineering Structures, 2017. 153:.p. 569-581.
  • 35. Cansiz, S., Aydemir, C. and Arslan, G., Comparison of Displacement Capacity of Reinforced Concrete Columns With Seismic Codes, Advances in Concrete Construction, 2019. 8 (4): p. 295–304.
  • 36. Perez, J.C.V., and Mulder, M.M, Improved Procedure for Determining the Ductility of Buildings under Seismic Loads, Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 2018. 34(1): Article number 27.
  • 37. Li, L., Wang, W. and Shi, P., Modelling Catastrophic Degradation of Flexural-Dominated RC Columns at Ultimate Displacements Based on Fibre Beam-Column Model. Journal of Building Engineering, 2022. 45: 103476.
  • 38. ACI318, Building code requirements for reinforced concrete and commentary, American Concrete Institute Committee, 2014. ISBN: 978-0-87031-930-3.

Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018

Yıl 2022, , 68 - 79, 15.08.2022
https://doi.org/10.35860/iarej.1058369

Öz

In the study, based on the non-linear calculation methods used to determine the seismic performance of structures in TBSC 2018, the stress-strain, moment-curvature, displacement capacity, plastic rotation limits, and deformation-based damage limit values of the reinforced concrete circular cross-section columns were calculated and compared according to different design parameters. The studied effects of the design parameters on the non-linear relation of reinforced concrete columns were also evaluated in terms of strength, curvature, and displacement ductility of the sections. All design parameters affecting the non-linear behavior and deformation limits of the reinforced concrete circular cross-section columns were taken into account. Deformation demands for reinforced concrete structural members are essential for detecting element damage. Based on TBSC (2018), non-linear relationships of reinforced concrete columns were obtained in order to calculate plastic hinge properties and deformation limits. For the Limited Damage, Controlled Damage, and Collapse Prevention performance levels defined for the structural elements in TBSC 2018, plastic rotation and deformation limit values were obtained according to the characteristic values calculated from the non-linear analyzes of reinforced concrete circular columns. For column models, damage limits and damage zones calculated based on TBSC 2018 were shown on the visually obtained moment-curvature relationships. Depending on the upper deformation limit values derived, cross-sectional deformation damage levels were determined and evaluated using the moment-curvature relationships. The variation of the non-linear behavior of column models by design parameters and deformation-based damage limits were examined both analytically and visually. The deformation limits remain in a safer direction as a result of increasing longitudinal and spiral reinforcement ratios for the reinforced concrete circular columns.

Destekleyen Kurum

Scientific Research Projects Coordination Office of Konya Technical University

Proje Numarası

project number 211104011

Teşekkür

The authors thank the Scientific Research Projects Coordination Office of Konya Technical University for supporting this study with project number 211104011.

Kaynakça

  • 1. Elci, H., and Goker, K. A., Comparison of Earthquake Codes (TEC 2007 and TBEC 2018) In Terms of Seismic Performance of RC Columns, international Journal of Scientific and Technological Research, 2018. 4 (6): p. 9-21.
  • 2. Kaya, M. P., Mevcut Betonarme Binaların Deprem Performanslarının Belirlenmesinde Doğrusal ve Doğrusal Olmayan Yöntemlerin Karşılaştırılması Üzerine Sayısal Bir İnceleme, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2006.
  • 3. Aydemir, C., Kırçıl, M. S., Hancıoğlu, B., and Zorbozan, M., Betonarme Kolonların Hasar Sınır Eğriliklerinin Belirlenmesi, İMO Teknik Dergi, 2011. 22 (109): p. 5613-5642.
  • 4. Aldemir, M. A., Kazaz, İ., Evaluation Of Deformation Limits in Codes for Reinforced Concrete Columns, Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences, 2018. 6: p. 225 - 233.
  • 5. Bouzid, H., and Kassoul, A, Curvature Ductility of High Strength Concrete Beams According to Eurocode 2, Structural Engineering and Mechanics, 2016. 58(1): p. 1–19.
  • 6. Bouzid, H., and Kassoul, A, Curvature Ductility Prediction of High Strength Concrete Beams, Structural Engineering and Mechanics, 2018. 66(2): p. 195–201.
  • 7. Chen, XC., Bai, Z.Z., and Au, FTK, Effect of Confinement on Flexural Ductility Design of Concrete Beams, Computers and Concrete, 2017. 20(2): p. 129–143.
  • 8. Elçi, H., Experimental Investigation of Section Damage Limits for Reinforced Columns with Low Strength Concrete According to TBSC 2018, Bitlis Eren University Journal of Science and Technology, 2021, 10 (4): p. 1373-1385.
  • 9. ASCE Standard, 41, Seismic Evaluation and Retrofit of Existing Buildings, (ASCE/SEI 41-17), Published by the American Society of Civil Engineers, Reston, Virginia, pp. 20191-4382, USA, 2017.
  • 10. Eurocode 8. Design of structures for earthquake resistance: Part 1: General rules, seismic actions and rules for buildings, BS EN 1998-1:2004.
  • 11. TBSC, Specification for Buildings to be Built in Seismic Zones, 2018, Ministry of Public Works and Settlement Government of the Republic of Turkey.
  • 12. Sucuoğlu, H, Performans Esaslı Deprem Mühendisliği, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 14–16 Ekim, 2015. İzmir.
  • 13. Aydemir, C., Aydemir, M. E., Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle Irdelenmesi. İMO Teknik Dergi, 2017. 28 (4): p. 8023-8049.
  • 14. Foroughi, S., Jamal, R., and Yüksel, S. B., Effect of Confining Reinforcement and Axial Load In Determining Deformation Based Damage Limits, Journal of Engineering Sciences and Design, 2020. 8 (4): p. 1042-1052.
  • 15. Işıltan, Ö., Betonarme Kolonlar için TDY 2007, EUROCODE 8 ve FEMA 356 ile Yapılan Performans Değerlendirmelerinin Deney Sonuçlarıyla Karşılaştırılması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 1-159, 2010.
  • 16. Acun, B., Sucuoğlu, H., Betonarme Kolonların Şekildeğiştirme Performans Sınırlarının Deneysel Gözlemlerle Değerlendirilmesi, İMO Teknik Dergi, 2011. 22 (108): p. 5523-5541.
  • 17. Yavaş, A., Türker, K., Experimental Investigation of Strain Based Damage Limits in Turkish Earthquake Code for RC Columns. SDU International Technological Sciences, 2012. 4 (2): p.102-114.
  • 18. Hasgül, U., Yavaş, A. Türker, K., Terzi, M., Birol, T., DBYBHY-2007’de Tanımlanan Hasar Kriterlerinin Betonarme Kolon Elemanlar için İncelenmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 2016. 21 (2): p. 499-514.
  • 19. Ulutaş, H., DBYBHY (2007) ve TBDY (2018) Deprem Yönetmeliklerinin Kesit Hasar Sınırları Açısından Kıyaslanması, Avrupa Bilim ve Teknoloji Dergisi, 2019. 17: p.351-359.
  • 20. Türker, K., Türkiye Deprem Yönetmeliğindeki Performans Esaslı Statik Yöntemlerin Düşey Rijitlik Düzensizliği Bulunan Çerçeveler Üzerinde Karşılaştırılması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2014. 20 (3): p. 70-77.
  • 21. Kazaz, İ., and Gülkan P., Süneklik Düzeyi Yüksek Betonarme Perdelerdeki Hasar Sınırları, İMO Teknik Dergi, 2012. 23 (114): p. 6113-6140.
  • 22. Yakut, A., and Solmaz, T, Performance Based Displacement Limits for Reinforced Concrete Columns Under Flexure, 15 WCEE, 2012. LISBOA.
  • 23. Foroughi, S., Yüksel, S. B., Investigation of Deformation-Based Damage Limits of RC Columns for Different Seismic Codes, Journal of Engineering Research (JER), 2021. Online First Articles.
  • 24. Foroughi, S., and Yüksel, S.B, Investigation of Non-linear Behavior of High Ductility Reinforced Concrete Shear Walls, International Advanced Researches and Engineering Journal, 2020. 4(2): p. 116–128.
  • 25. Foroughi, S., and Yüksel, S. B., Deformation Based Damage Limits of the Ductile Reinforced Concrete Shear Walls, Journal of Advanced Research in Natural and Applied Sciences, 2021. 7 (2): p. 244–255.
  • 26. Foroughi, S., and Yüksel S. B., Investigation of Deformation Based Damage Limits of Reinforced Concrete Column, International Journal of Engineering Research and Development, 2019. 11(2): p. 584-601.
  • 27. Sasani, M., Life-Safety And Near-Collapse Capacity Models For Seismic Shear Behavior of Reinforced Concrete Columns, ACI Structural Journal, 2007. 104 (1): p. 30-38.
  • 28. Mander, J.B., Priestley, M.J.N., and Park, R, Theoretical Stress–Strain Model for Confined Concrete, Journal of Structural Engineering (ASCE), 1988. 114(8): p.1804–1826.
  • 29. SAP 2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • 30. Zhong, J., Ni, M., Hu, H., Yuan, W., Yuan, H. and Pang, Y., Uncoupled Multivariate Power Models for Estimating Performance-Based Seismic Damage States of Column Curvature Ductility, Structures, 2022. 36: p. 752-764.
  • 31. Liu, X., Jiang, H., Ye, Y. and Guo, Z., Deformation-Based Performance Index of Corroded Reinforced Concrete Beams, Journal of Building Engineering, 2021. 34 (2): 101940.
  • 32. Foroughi, S., Jamal, R., and Yüksel, S. B., Effect of Confining Reinforcement and Axial Load Level on Curvature Ductility and Effective Stiffness of Reinforced Concrete Columns, El-Cezerî Journal of Science and Engineering (ECJSE), 2020. 7 (3): p. 1309 – 1319.
  • 33. Paulay, T., and Priestley, M.J.N, Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, Inc, 1992. New York, USA.
  • 34. Özdemir, M. A., Kazaz, İ., and Özkaya, S. G., Evaluation and Comparison of Ultimate Deformation Limits for Reinforced Concrete Columns, Engineering Structures, 2017. 153:.p. 569-581.
  • 35. Cansiz, S., Aydemir, C. and Arslan, G., Comparison of Displacement Capacity of Reinforced Concrete Columns With Seismic Codes, Advances in Concrete Construction, 2019. 8 (4): p. 295–304.
  • 36. Perez, J.C.V., and Mulder, M.M, Improved Procedure for Determining the Ductility of Buildings under Seismic Loads, Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 2018. 34(1): Article number 27.
  • 37. Li, L., Wang, W. and Shi, P., Modelling Catastrophic Degradation of Flexural-Dominated RC Columns at Ultimate Displacements Based on Fibre Beam-Column Model. Journal of Building Engineering, 2022. 45: 103476.
  • 38. ACI318, Building code requirements for reinforced concrete and commentary, American Concrete Institute Committee, 2014. ISBN: 978-0-87031-930-3.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Research Articles
Yazarlar

Saeid Foroughi 0000-0002-7556-2118

Bahadır Yüksel 0000-0002-4175-1156

Proje Numarası project number 211104011
Yayımlanma Tarihi 15 Ağustos 2022
Gönderilme Tarihi 15 Ocak 2022
Kabul Tarihi 8 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Foroughi, S., & Yüksel, B. (2022). Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018. International Advanced Researches and Engineering Journal, 6(2), 68-79. https://doi.org/10.35860/iarej.1058369
AMA Foroughi S, Yüksel B. Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018. Int. Adv. Res. Eng. J. Ağustos 2022;6(2):68-79. doi:10.35860/iarej.1058369
Chicago Foroughi, Saeid, ve Bahadır Yüksel. “Non-Linear Displacement and Deformation Damage Limits of Reinforced Concrete Circular Columns by Analytical Observations According to TBSC 2018”. International Advanced Researches and Engineering Journal 6, sy. 2 (Ağustos 2022): 68-79. https://doi.org/10.35860/iarej.1058369.
EndNote Foroughi S, Yüksel B (01 Ağustos 2022) Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018. International Advanced Researches and Engineering Journal 6 2 68–79.
IEEE S. Foroughi ve B. Yüksel, “Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018”, Int. Adv. Res. Eng. J., c. 6, sy. 2, ss. 68–79, 2022, doi: 10.35860/iarej.1058369.
ISNAD Foroughi, Saeid - Yüksel, Bahadır. “Non-Linear Displacement and Deformation Damage Limits of Reinforced Concrete Circular Columns by Analytical Observations According to TBSC 2018”. International Advanced Researches and Engineering Journal 6/2 (Ağustos 2022), 68-79. https://doi.org/10.35860/iarej.1058369.
JAMA Foroughi S, Yüksel B. Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018. Int. Adv. Res. Eng. J. 2022;6:68–79.
MLA Foroughi, Saeid ve Bahadır Yüksel. “Non-Linear Displacement and Deformation Damage Limits of Reinforced Concrete Circular Columns by Analytical Observations According to TBSC 2018”. International Advanced Researches and Engineering Journal, c. 6, sy. 2, 2022, ss. 68-79, doi:10.35860/iarej.1058369.
Vancouver Foroughi S, Yüksel B. Non-linear displacement and deformation damage limits of reinforced concrete circular columns by analytical observations according to TBSC 2018. Int. Adv. Res. Eng. J. 2022;6(2):68-79.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.