Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 1, 12 - 18, 23.04.2025
https://doi.org/10.35860/iarej.1560048

Abstract

References

  • 1. Prasad, R. K., A. Sharma, P. B. Mazumder, and A. Dhussa, A comprehensive pre-treatment strategy evaluation of ligno-hemicellulosic biomass to enhance biogas potential in the anaerobic digestion process. RCS Sustainability, 2024. 2: p. 2444-2467.
  • 2. Tjutju, N. A. S., J. Ammenberg, and A. Lindfors, Biogas potential studies: A review of their scope, approach, and relevance. Renewable and Sustainable Energy Reviews, 2024. 201: p. 114631.
  • 3. Aigbe, U. O., K. E. Ukhurebor, A. O. Osibote, M. A. Hassaan, and A. E. Nemr, Optimization and prediction of biogas yield from pretreated Ulva Intestinalis Linnaeus applying statistical-based regression approach and machine learning algorithms. Renewable Energy, 2024. 235: p. 121347.
  • 4. Joshi, J., P. Bhatt, P. Kandel, M. Khadka, S. Kathariya, S. Thapa, S. Jha, S. Phaiju, S. Bajracharya, and A. P. Yadav, Integrating microbial electrochemical cell in anaerobic digestion of vegetable wastes to enhance biogas production. Bioresource Technology Reports, 2024. 27: p. 101940.
  • 5. Shen, R., P. Sun, J. Liu, J. Luo, Z. Yao, R. Zhang, J. Yu, and L. Zhao, Robust prediction for characteristics of digestion products in an industrial-scale biogas project via typical non-time series and time-series machine learning algorithms. Chemical Engineering Journal, 2024. 498: p. 155582.
  • 6. Rodero, M. D. R., R. Muñoz, A. G. Sánchez, H. A. Ruiz, and G. Quijano, Membrane materials for biogas purification and upgrading: Fundamentals, recent advances and challenges. Journal of Environmental Chemical Engineering, 2024. Available online 14 September 2024, p. 114106.
  • 7. Alharbi, R. M., Anaerobic co-digestion of cow manure and microalgae to increase biogas production: A sustainable bioenergy source. Journal of King Saud University-Science, 2024. 36(9): p. 103380.
  • 8. Ma, C., H. Yu, G. Monticone, S. Ma, J. V. Herle, and L. Wang, Techno-economic evaluation of biogas-fed SOFC systems with novel biogas purification and carbon capture technologies. Renewable Energy, 2024. 235: p. 121302.
  • 9. Rostamzadeh, H., S. G. Gargari, A. S. Namin, and H. Ghaebi, A novel multigeneration system driven by a hybrid biogas-geothermal heat source, Part I: Thermodynamic modeling. Energy Conversion and Management, 2018. 177: p. 535–562.
  • 10. Sun, K., W. Zhang, R. Li, D. Liu, X. Gao, H. Song, X. Chen, and L. Zhou, Thermodynamic feasibility evaluation of an innovative multigeneration system using biogas dry reforming integrated with a CCHP-desalination process. Desalination, 2024. 580: p. 117526.
  • 11. Zhao, X., H. Chen, J. Li, P. Pan, F. Gui, and G. Xu, Thermodynamic and economic analysis of a novel design for combined waste heat recovery of biogas power generation and silicon production. Energy, 2024. 290: p. 130272.
  • 12. Cao, Y., H. A. Dhahad, H. M. Hussen, and T. Parikhani, Proposal and evaluation of two innovative combined gas turbine and ejector refrigeration cycles fueled by biogas: Thermodynamic and optimization analysis. Renewable Energy, 2022. 181: p. 749-764.
  • 13. Gholizadeh, T., M. Vajdi, and F. Mohammadkhani, Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas. Energy Conversion and Management, 2019. 181: p. 463–475.
  • 14. Ghorbani, B., A. Ebrahimi, and M. Ziabasharhagh, Thermodynamic and economic evaluation of biomethane and carbon dioxide liquefaction process in a hybridized system of biogas upgrading process and mixed fluid cascade liquefaction cycle. Process Safety and Environmental Protection, 2021. 151: p. 222–243.
  • 15. Jung, P. G., S. Kim, Y. I. Lim, H. Kim, and H. M. Moon, Techno-economic comparisons of CO2 compression and liquefaction processes with distillation columns for high purity and recovery. International Journal of Greenhouse Gas Control, 2024. 134: p. 104113.
  • 16. Yousef, A. M., Y. A. Eldrainy, W. M. El-Maghlany, and A. Attia, Biogas upgrading process via low-temperature CO2 liquefaction and separation. Journal of Natural Gas Science and Engineering, 2017. 45: p. 812-824.
  • 17. Øi, L. E., N. Eldrup, U. Adhikari, M. H. Bentsen, J. L. Badalge, and S. Yang, Simulation and cost comparison of CO2 liquefaction. Energy Procedia, 2016. 86: p. 500–510.
  • 18. Liu, Z. X. Yan, S. Wang, X. Wei, Y. Zhang, J. Ding, and C. Su, Performance of compressed CO2 energy storage systems with different liquefaction and storage scenarios. Fuel, 2024. 359: p. 130527.
  • 19. Khosravi, S., R. K. Saray, E. Neshat, and A. Arabkoohsar, Towards an environmentally friendly power and hydrogen co-generation system: Integration of solar-based sorption enhanced gasification with in-situ CO2 capture and liquefaction process. Chemosphere, 2023. 343: p. 140226.
  • 20. Afyon Energy, [access date 09.15.2024], https://afyonenerji.com.tr/
  • 21. Aspen Plus, Engineering Analysis Database. 2024.

Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant

Year 2025, Volume: 9 Issue: 1, 12 - 18, 23.04.2025
https://doi.org/10.35860/iarej.1560048

Abstract

The composition of the biogas produced in Afyon biogas power plant is approximately as follows: 55% CH4 (methane) - 40% CO2 (carbon dioxide)- 4.5% H2O (water) and trace amounts of other components. The methane produced is used in gas engines to generate electricity. Carbon dioxide, however, increases greenhouse gas emissions when released into the atmosphere. The model designed in this study includes the liquefaction and storage of CO2 and the technoeconomic analysis of this process. The analysis was performed in the Aspen Plus software, which is widely used in the analysis of complex processes involving numerious chemical reactions. According to the results of the thermodynamic analysis, the energy efficiency, exergy efficiency, net electrical power and liquid CO2 production rate of the plant were determined as 14.92%, 13.08%, 4,000 kW and 99 kg/h, respectively. According to the results of the technoeconomic analysis, unit electricity cost, liquid CO2 flow cost and TCC (total capital cost) are 77.5 $/MWh, 993.68 $/h and 47,548,200 $ respectively. The designed model has the potential to prevent the release of CO2 into the atmosphere at reasonable prices.

References

  • 1. Prasad, R. K., A. Sharma, P. B. Mazumder, and A. Dhussa, A comprehensive pre-treatment strategy evaluation of ligno-hemicellulosic biomass to enhance biogas potential in the anaerobic digestion process. RCS Sustainability, 2024. 2: p. 2444-2467.
  • 2. Tjutju, N. A. S., J. Ammenberg, and A. Lindfors, Biogas potential studies: A review of their scope, approach, and relevance. Renewable and Sustainable Energy Reviews, 2024. 201: p. 114631.
  • 3. Aigbe, U. O., K. E. Ukhurebor, A. O. Osibote, M. A. Hassaan, and A. E. Nemr, Optimization and prediction of biogas yield from pretreated Ulva Intestinalis Linnaeus applying statistical-based regression approach and machine learning algorithms. Renewable Energy, 2024. 235: p. 121347.
  • 4. Joshi, J., P. Bhatt, P. Kandel, M. Khadka, S. Kathariya, S. Thapa, S. Jha, S. Phaiju, S. Bajracharya, and A. P. Yadav, Integrating microbial electrochemical cell in anaerobic digestion of vegetable wastes to enhance biogas production. Bioresource Technology Reports, 2024. 27: p. 101940.
  • 5. Shen, R., P. Sun, J. Liu, J. Luo, Z. Yao, R. Zhang, J. Yu, and L. Zhao, Robust prediction for characteristics of digestion products in an industrial-scale biogas project via typical non-time series and time-series machine learning algorithms. Chemical Engineering Journal, 2024. 498: p. 155582.
  • 6. Rodero, M. D. R., R. Muñoz, A. G. Sánchez, H. A. Ruiz, and G. Quijano, Membrane materials for biogas purification and upgrading: Fundamentals, recent advances and challenges. Journal of Environmental Chemical Engineering, 2024. Available online 14 September 2024, p. 114106.
  • 7. Alharbi, R. M., Anaerobic co-digestion of cow manure and microalgae to increase biogas production: A sustainable bioenergy source. Journal of King Saud University-Science, 2024. 36(9): p. 103380.
  • 8. Ma, C., H. Yu, G. Monticone, S. Ma, J. V. Herle, and L. Wang, Techno-economic evaluation of biogas-fed SOFC systems with novel biogas purification and carbon capture technologies. Renewable Energy, 2024. 235: p. 121302.
  • 9. Rostamzadeh, H., S. G. Gargari, A. S. Namin, and H. Ghaebi, A novel multigeneration system driven by a hybrid biogas-geothermal heat source, Part I: Thermodynamic modeling. Energy Conversion and Management, 2018. 177: p. 535–562.
  • 10. Sun, K., W. Zhang, R. Li, D. Liu, X. Gao, H. Song, X. Chen, and L. Zhou, Thermodynamic feasibility evaluation of an innovative multigeneration system using biogas dry reforming integrated with a CCHP-desalination process. Desalination, 2024. 580: p. 117526.
  • 11. Zhao, X., H. Chen, J. Li, P. Pan, F. Gui, and G. Xu, Thermodynamic and economic analysis of a novel design for combined waste heat recovery of biogas power generation and silicon production. Energy, 2024. 290: p. 130272.
  • 12. Cao, Y., H. A. Dhahad, H. M. Hussen, and T. Parikhani, Proposal and evaluation of two innovative combined gas turbine and ejector refrigeration cycles fueled by biogas: Thermodynamic and optimization analysis. Renewable Energy, 2022. 181: p. 749-764.
  • 13. Gholizadeh, T., M. Vajdi, and F. Mohammadkhani, Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas. Energy Conversion and Management, 2019. 181: p. 463–475.
  • 14. Ghorbani, B., A. Ebrahimi, and M. Ziabasharhagh, Thermodynamic and economic evaluation of biomethane and carbon dioxide liquefaction process in a hybridized system of biogas upgrading process and mixed fluid cascade liquefaction cycle. Process Safety and Environmental Protection, 2021. 151: p. 222–243.
  • 15. Jung, P. G., S. Kim, Y. I. Lim, H. Kim, and H. M. Moon, Techno-economic comparisons of CO2 compression and liquefaction processes with distillation columns for high purity and recovery. International Journal of Greenhouse Gas Control, 2024. 134: p. 104113.
  • 16. Yousef, A. M., Y. A. Eldrainy, W. M. El-Maghlany, and A. Attia, Biogas upgrading process via low-temperature CO2 liquefaction and separation. Journal of Natural Gas Science and Engineering, 2017. 45: p. 812-824.
  • 17. Øi, L. E., N. Eldrup, U. Adhikari, M. H. Bentsen, J. L. Badalge, and S. Yang, Simulation and cost comparison of CO2 liquefaction. Energy Procedia, 2016. 86: p. 500–510.
  • 18. Liu, Z. X. Yan, S. Wang, X. Wei, Y. Zhang, J. Ding, and C. Su, Performance of compressed CO2 energy storage systems with different liquefaction and storage scenarios. Fuel, 2024. 359: p. 130527.
  • 19. Khosravi, S., R. K. Saray, E. Neshat, and A. Arabkoohsar, Towards an environmentally friendly power and hydrogen co-generation system: Integration of solar-based sorption enhanced gasification with in-situ CO2 capture and liquefaction process. Chemosphere, 2023. 343: p. 140226.
  • 20. Afyon Energy, [access date 09.15.2024], https://afyonenerji.com.tr/
  • 21. Aspen Plus, Engineering Analysis Database. 2024.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Muhammed Arslan 0000-0001-8387-7008

Submission Date October 2, 2024
Acceptance Date February 16, 2025
Early Pub Date April 29, 2025
Publication Date April 23, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Arslan, M. (2025). Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant. International Advanced Researches and Engineering Journal, 9(1), 12-18. https://doi.org/10.35860/iarej.1560048
AMA Arslan M. Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant. Int. Adv. Res. Eng. J. April 2025;9(1):12-18. doi:10.35860/iarej.1560048
Chicago Arslan, Muhammed. “Thermodynamic and Technoeconomic Feasibility Assessment on Liquefaction of CO2 By-Product of Afyon Biogas Power Plant”. International Advanced Researches and Engineering Journal 9, no. 1 (April 2025): 12-18. https://doi.org/10.35860/iarej.1560048.
EndNote Arslan M (April 1, 2025) Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant. International Advanced Researches and Engineering Journal 9 1 12–18.
IEEE M. Arslan, “Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant”, Int. Adv. Res. Eng. J., vol. 9, no. 1, pp. 12–18, 2025, doi: 10.35860/iarej.1560048.
ISNAD Arslan, Muhammed. “Thermodynamic and Technoeconomic Feasibility Assessment on Liquefaction of CO2 By-Product of Afyon Biogas Power Plant”. International Advanced Researches and Engineering Journal 9/1 (April2025), 12-18. https://doi.org/10.35860/iarej.1560048.
JAMA Arslan M. Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant. Int. Adv. Res. Eng. J. 2025;9:12–18.
MLA Arslan, Muhammed. “Thermodynamic and Technoeconomic Feasibility Assessment on Liquefaction of CO2 By-Product of Afyon Biogas Power Plant”. International Advanced Researches and Engineering Journal, vol. 9, no. 1, 2025, pp. 12-18, doi:10.35860/iarej.1560048.
Vancouver Arslan M. Thermodynamic and technoeconomic feasibility assessment on liquefaction of CO2 by-product of Afyon biogas power plant. Int. Adv. Res. Eng. J. 2025;9(1):12-8.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.