Research Article
BibTex RIS Cite

Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels

Year 2025, Volume: 9 Issue: 3, 153 - 161, 25.12.2025
https://doi.org/10.35860/iarej.1703693

Abstract

Conventional Cr-V steel grades are commonly preferred for their decent mechanical properties. In applications demanding superior fatigue performance, Cr-Mo-V steels are typically used, or new alternative steel grades are developed instead of Cr-V steels. However, in many applications, the use of non-standard grades is generally not allowed. Additionally, the alloying costs of Mo-included standard steels are significantly higher than Cr-V steels due to the high price of Mo. In this study, the effect of Nb addition on microstructural and mechanical properties as well as fatigue performance of V-bearing medium carbon Q&T steel was investigated. The results indicate that adding an appropriate amount of Nb enhances fatigue endurance limits due to the improved combination of strength and toughness. The findings suggest that incorporating Nb into V-bearing medium carbon Q&T standard steel provides a cost-effective solution for achieving superior fatigue performance without altering the chemical composition ranges designated by international standards.

References

  • 1. Mosayebi, A., M. Soleimani, H. Mirzadeh, and C. Dehghanian, Tempering kinetics and corrosion resistance of quenched and tempered AISI 4130 medium carbon steel. Materials and Corrosion, 2021. 72(11): p. 1808–1812.
  • 2. Dávila-Pérez, M. I., F. Reyes-Calderón, O. Vázquez-Gómez, H. J. Vergara-Hernández, J. C. Villalobos and E. López-Martínez, Hydrogen permeation in a Cr–Mo–V medium-carbon steel: Effect of the quenching medium and tempering temperature. The International Journal of Hydrogen Energy, 2022. 47(77): p. 33105–33111.
  • 3. Zhang, Y., Z. Hu, L. Susmel, J. Zhang, K. Zhang, Y. Li, Y. Wang and B. Wei, Fatigue behaviour of a multiphase medium carbon steel: Comparison between ferrite/pearlite and tempered microstructures, Fatigue & Fracture of Engineering Materials & Structures, 2020. 43(11): p. 2542–2549.
  • 4. Nkhoma, R., K. A. Annan and C. Siyasiya, Effect of adding Cr, Ni and Mo on quench and temper microstructure and mechanical properties of a Si-Mn spring steel. Materials Today: Proceedings, 2021. 56(2021): p. 1629–1634.
  • 5. Shiozawa, K., M. Murai, Y. Shimatani and T. Yoshimoto, Transition of fatigue failure mode of Ni–Cr–Mo low-alloy steel in very high cycle regime. The International Journal of Fatigue, 2009. 32(3): p. 541–550.
  • 6. Wu, Y., C. Zhang, S. Dong, W. Wang, X. Mao, S. Wang, G. Wu, J. Gao, H. Wu and H. Zhao, The dual role of Nb microalloying on the High‐Cycle fatigue of 1.0%C–1.5%Cr bearing steel. Fatigue & Fracture of Engineering Materials & Structures, 2025. 48(3): p. 1301-1314.
  • 7. Zhang, C. L., Y. Z. Liu, C. Jiang and J. F. Xiao, Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel. Journal of Iron and Steel Research International, 2011. 18(6): p. 49-53..
  • 8. Guo, S., C. Li, J. Shi, F. Luan and X. Song, Effect of quenching media and tempering temperature on fatigue property and fatigue life estimation based on RBF neural network of 0.44% carbon stee,. Mechanical Sciences, 2019. 10(1): p. 273–286.
  • 9. Ravindran, M., M. Aswatha, N. Santhosh, G. Ravichandran and M. Madhusudhan, Effect of heat treatment on fatigue characteristics of EN8 Stee., in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing. p. 012009.
  • 10. Murugesan, V., D. Ganesan and H. Tarigonda, Effect of hardening and tempering temperatures on the mechanical behavior of alloy steel. SAE Technical Paper Series 1, 2025.
  • 11. Zhi, C., G. Yuan, Y. Xian-Guo, G. Hong, H. Yao, Z. Hai-Dong and Z. Min-Na, Enhanced Axial Tension-Tension Fatigue Resistance of a 51CrV4 Spring Steel by Cryogenic Treatment. Revista de Chimie. 2021, 72(1): p. 138-151.
  • 12. James, M., D. Hattingh and L. Matthews, Embrittlement failure of 51CrV4 leaf springs. Engineering Failure Analysis, 2022. 139(2022): p. 106517.
  • 13. Guimaji, S., A. Khalifa and R. Fathallah, Effect of shot peening parameters on parabolic leaf spring’s residual stress, in Lecture Notes in Mechanical Engineering, 2020. p. 77–83.
  • 14. Matjeke, V., G. Mukwevho, A. Maleka and J. Van Der Merwe, Effect of heat treatment on strength and ductility of 52CrMoV4 spring steel. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing. p. 012044.
  • 15. Maosen, T., C. Gang, S. Sixi, C. Li, C. Gang and Y. Xuming, Constitutive model of hot deformation behavior of 52CrMoV4 spring steel. Nonferrous Metals Engineering, 2023. 13(3): p. 49-60.
  • 16. European Standards, DIN EN 10089 Hot rolled steels for quenched and tempered springs - Technical delivery conditions. [cited 2025 21 May]; Available from: https://www.en-standard.eu
  • 17. European Standards, DIN EN 10020 Definition and classification of grades of steel. [cited 2025 21 May]; Available from: https://www.en-standard.eu
  • 18. Maugis, P. and M. Gouné, Kinetics of vanadium carbonitride precipitation in steel: A computer model. Acta Materialia, 2005. 53(12): p. 3359–3367.
  • 19. Foder, J., J. Burja and Klančnik, G. Grain size evolution and mechanical properties of Nb, V–Nb, and Ti–Nb boron type S1100QL steels. Metals, 2021. 11(3): p. 492.
  • 20. Kundu, A., Austenite grain boundary pinning during reheating by mixed AlN and Nb(C,N) particles, ISIJ International, 2014. 54(3): p. 677–684.
  • 21. Zhu, Y., S. Fan, X. Lian and N. Min, Effect of precipitated particles on austenite grain growth of Al- and Nb-microalloyed 20MnCr gear steel. Metals, 2024. 14(4): p. 469–469.
  • 22. Tsuchiyama, T., Y. Amano, S. Uranaka and T. Masumura, Effect of initial austenite grain size on microstructure development and mechanical properties in a medium-carbon steel treated with one-step quenching and partitioning. ISIJ International, 2021. 61(2): p. 537–545.
  • 23. You, C. Bernhard, M. Bernhard, S. K. Michelic, The simple microsegregation model for steel considering MnS formation in the liquid and solid phases, J. Mater. Res. Technol. 28 (2024) 4110–4115.
  • 24. Arreola-Herrera, R., A. Cruz-Ramírez, J. E. Rivera-Salinas, J. A. Romero-Serrano, and R. G. Sánchez-Alvarado, The effect of non-metallic inclusions on the mechanical properties of 32 CDV 13 steel and their mechanical stress analysis by numerical simulation. Theoretical and Applied Fracture Mechanics, 2018. 94(2018): p. 134-146..
  • 25. Celada-Casero, C., J. Sietsma & M. J. Santofimia, The role of the austenite grain size in the martensitic transformation in low carbon steels. Materials & Design, 2019. 167(2019): p. 107625.
  • 26. Prawoto, Y., N. Jasmawati and K. Sumeru, Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel, Journal of Materials Science & Technology, 2012. 28(5): p. 461–466.
  • 27. Wang, Q., Y. Sun, C. Zhang, Q. Wang and F. Zhang, Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel. Materials Research Express, 2018. 5(4): p. 046501–046501.
  • 28. Zou, Y., Y. Xu, Z. Hu, S. Chen, D. Han, R. Misra and G. Wang, High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite. Materials Science and Engineering A, 2017. 707(2017): p. 270–279.
  • 29. Wang, Z. and M. X. Huang, Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite. International Journal of Plasticity, 2020. 134(2020): p. 102851–102851.
  • 30. Hidalgo, J., K. O. Findley and M. J. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Materials Science and Engineering A, 2017. 690(2017): p. 337–347.
  • 31. Van Der Zwaag, S., L. Zhao, S. O. Kruijver and J. Sietsma, Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels. ISIJ International, 2022. 42(12): p. 1565–1570.
  • 32. Wong, A., Modelling the stability and transformation kinetics of retained austenite in steels, Materials Science and Technology, 2022. 38(11): p. 676–688.
  • 33. Oja, O., Saastamoinen, A., Patnamsetty, M., Honkanen, M., Peura, P. and Järvenpää, M, Microstructure and mechanical properties of Nb and V microalloyed TRIP-assisted steels. Metals, 9(8): p. 887.
  • 34. Tian, S., Z. Liu, R. Fu and X. Wang, Effect of niobium alloying on the austenite grain growth and mechanical properties of ultrahigh-strength stainless steel. Materials Research Express, 2022. 9(2): p. 026511–026511.
  • 35. Jacques, P. J., F. Delannay and J. Ladrière, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steel. Metallurgical and Materials Transactions A, 2001. 32(11): p. 2759–2768.
  • 36. Grajcar, A., A. Skowronek, and K Radwański, Mechanical behavior and stability of dispersed retained austenite in thermomechanically rolled and isothermally-treated TRIP-aided multiphase steel. Materials Science and Engineering: A, 2022. 830(2022): p. 142300.
  • 37. Alan, E., İ. İ. Ayhan, B. Ögel and D. Uzunsoy, A comparative assessment of artificial neural network and regression models to predict mechanical properties of continuously cooled low carbon steels: an external data analysis approach. Journal of Innovative Engineering and Natural Science, 2024. 4(2): p. 495–513.
  • 38. Ke, R., C. Hu, M. Zhong, X. Wan and K. Wu, Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary. The Journal of Materials Research and Technology, 2022. 17(2022): p. 2999–3012.
  • 39. El-Tahawy, M., P. H. R. Pereira, Y. Huang, H. Park, H. Choe, T. G. Langdon and J. Gubicza, Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Materials Letters, 2017. 214(2017): p. 240–242.
  • 40. Tomota, Y., A. Narui and N. Tsuchida, Tensile behavior of fine-grained steels. ISIJ International, 2008. 48(8): p. 1107–1113.
  • 41. Ayhan, İ. İ., E. Alan, A. Bal and S. Gündüz, The influence of multi-pass hot rolling parameters and subsequent heat treatment on microstructure and mechanical properties of medium-carbon steel. Transactions of the Indian Institute of Metals, 2024. 77(11): p. 3475–3485.
  • 42. Zhou, S., K. Zhang, Y. Wang, J. Gu and Y. Rong, High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching–partitioning–tempering process. Materials Science and Engineering A, 2011. 528(27): p. 8006–8012.
  • 43. Ming, L., Q. Wang, H. Wang, C. Zhang, Z. Wei and A. Guo, A remarkable role of niobium precipitation in refining microstructure and improving toughness of a QT-treated 20CrMo47NbV steel with ultrahigh strength. Materials Science and Engineering A, 2014. 613(2014): p. 240–249.
  • 44. Kim, S., S. Lee and B. S. Lee, Effects of grain size on fracture toughness in transition temperature region of Mn–Mo–Ni low-alloy steels. Materials Science and Engineering A, 2003. 359(1–2): p. 198–209.
  • 45. Huang, J. N., Z. Y. Tang, H. Ding and R. D. K. Misra, The significant impact of phase fraction and austenite stability on the mechanical properties of a low-alloyed TRIP-aided steel: An insight into experimental analysis and predictions. Materials Science and Engineering A, 2019. 759(2019): p. 40–46.
  • 46. Deng, B., D. Yang, G. Wang, Z. Hou and H. Yi, Effects of Austenitizing Temperature on Tensile and Impact Properties of a Martensitic Stainless Steel Containing Metastable Retained Austenite. Materials, 2021. 14(4): p. 1000.
  • 47. Park, S. H. and C. S. Lee, Relationship between mechanical properties and high-cycle fatigue strength of medium-carbon steels. Materials Science and Engineering A, 2017. 690(2017): p. 185–194.
  • 48. Gao, C., M. Yang, J. Pang, S. Li, M. Zou, X. Li and Z. Zhang, Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel. Materials Science and Engineering A, 2021. 832(2021): p. 142418.
  • 49. Ma, L., M. Wang, J. Shi, W. Hui and H. Dong, Influence of niobium microalloying on rotating bending fatigue properties of case carburized steels. Materials Science and Engineering A, 2008. 498(1–2): p. 258–265.
  • 50. de Diego-Calderón, I., P. Rodriguez-Calvillo, A. Lara, J. M. Molina-Aldareguia, R. H. Petrov, D. De Knijf, and I. Sabirov, Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite. Materials Science and Engineering A, 2015. 641(2015): p. 215-224.
  • 51. Hayama, M., Maki, Y., Kikuchi, S. and Komotori, J., Change behavior of retained austenite and residual stress on carburized SCM420H steel during fatigue process. ISIJ International. 2024, 64(3): p. 597-604.
  • 52. Sachs, N. W., Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history, Journal of Failure Analysis and Prevention, 2005. 5(2): p. 11–15.
There are 52 citations in total.

Details

Primary Language English
Subjects Material Characterization, Material Production Technologies, Materials Engineering (Other)
Journal Section Research Article
Authors

Emre Alan 0000-0002-1894-0231

Submission Date May 21, 2025
Acceptance Date October 13, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Alan, E. (2025). Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels. International Advanced Researches and Engineering Journal, 9(3), 153-161. https://doi.org/10.35860/iarej.1703693
AMA Alan E. Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels. Int. Adv. Res. Eng. J. December 2025;9(3):153-161. doi:10.35860/iarej.1703693
Chicago Alan, Emre. “Effect of Nb Addition on Fatigue Properties of V-Bearing Medium Carbon Quenched and Tempered Steels”. International Advanced Researches and Engineering Journal 9, no. 3 (December 2025): 153-61. https://doi.org/10.35860/iarej.1703693.
EndNote Alan E (December 1, 2025) Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels. International Advanced Researches and Engineering Journal 9 3 153–161.
IEEE E. Alan, “Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels”, Int. Adv. Res. Eng. J., vol. 9, no. 3, pp. 153–161, 2025, doi: 10.35860/iarej.1703693.
ISNAD Alan, Emre. “Effect of Nb Addition on Fatigue Properties of V-Bearing Medium Carbon Quenched and Tempered Steels”. International Advanced Researches and Engineering Journal 9/3 (December2025), 153-161. https://doi.org/10.35860/iarej.1703693.
JAMA Alan E. Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels. Int. Adv. Res. Eng. J. 2025;9:153–161.
MLA Alan, Emre. “Effect of Nb Addition on Fatigue Properties of V-Bearing Medium Carbon Quenched and Tempered Steels”. International Advanced Researches and Engineering Journal, vol. 9, no. 3, 2025, pp. 153-61, doi:10.35860/iarej.1703693.
Vancouver Alan E. Effect of Nb addition on fatigue properties of V-bearing medium carbon quenched and tempered steels. Int. Adv. Res. Eng. J. 2025;9(3):153-61.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.