Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 444 - 453, 15.12.2021
https://doi.org/10.35860/iarej.906557

Öz

Kaynakça

  • 1. Fauchereau N., Trzaska S., Rouault M., Richard Y., Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Natural Hazards, 2003. 29(2): p. 139-154.
  • 2. Marumbwa FM, Cho MA, Chirwa PW, Analysis of spatio-temporal rainfall trends across southern African biomes between 1981 and 2016. Physics and Chemistry of the Earth, 2019. 114(August): p. 102808.
  • 3. Archer ERM, Landman WA, Tadross MA, et al., Understanding the evolution of the 2014–2016 summer rainfall seasons in southern Africa: Key lessons. Climate Risk Management, 2017. 16: p. 22-28.
  • 4. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt MT and HLM, IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.; 2007.
  • 5. Pachauri RK, Meyer LA, IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Published online 2014: p. 151.
  • 6. Ghosh S, Mujumdar PP, Climate change impact assessment: Uncertainty modeling with imprecise probability. Journal of Geophysical Research Atmospheres, 2009. 114(18).
  • 7. Ibrahim I, Usman MT, Abdulkadir A, Emigilati MA, Analysis of Rainfall Distribution, Temporal Trends, and Rates of Change in the Savannah Zones of Nigeria. Atmosphere - Ocean, 2020. 58(5): p. 351-360.
  • 8. Cook C, Reason CJC, Hewitson BC, Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region. Climate Research, 2004. 26(1): p. 17-31.
  • 9. Vuille M, Bradley RS, Healy R, et al., Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. Journal of Geophysical Research: Atmospheres, 2003. 108(6).
  • 10. Ahmadalipour A, Moradkhani H, Demirel MC, A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. Journal of Hydrology, 2017. 553: p. 785-797.
  • 11. Dubovyk O, Ghazaryan G, González J, Graw V, Löw F, Schreier J, Drought hazard in Kazakhstan in 2000–2016: a remote sensing perspective. Environmental Monitoring and Assessment, 2019. 191(8).
  • 12. Oguntunde PG, Abiodun BJ, Lischeid G, Rainfall trends in Nigeria, 1901-2000. Journal of Hydrology, 2011. 411(3-4): p. 207-218.
  • 13. Cannarozzo M, Noto L V., Viola F, Spatial distribution of rainfall trends in Sicily (1921-2000). Physics and Chemistry of the Earth, 2006. 31(18): p. 1201-1211.
  • 14. Ogunrinde AT, Oguntunde PG, Akinwumiju AS, Fasinmirin JT, Analysis of recent changes in rainfall and drought indices in Nigeria, 1981–2015. Hydrological Sciences Journal, 2019. 64(14): p. 1755-1768.
  • 15. Botswana Environment Statistics: Climate Digest. 2019. [cited 2021 01 February]; Available from: https://www.statsbots.org.bw/sites/default/files/publications/Climate%20Digest%20%202019.pdf.
  • 16. Adedoyin J. A. and Mphale K., Climate Variability : Its Impacts and Mechanism Within The Kalahari Transect of Southern Africa. in Mali Symposium on Applied Sciences. Bamako: p. 120-135.
  • 17. Matarira CH, Jury MR, Contrasting meteorological structure of intra‐seasonal wet and dry spells in Zimbabwe. International Journal of Climatology, 1992. 12(2): p. 165-176.
  • 18. Worldbank, Climate Change Knowledge Portal. [cited 2021 10 February]; Available from: https://climateknowledgeportal.worldbank.org/country/botswana/climate-data-historical.
  • 19. Mphale KM, Dash SK, Adedoyin A, Panda SK, Rainfall regime changes and trends in Botswana Kalahari Transect’s late summer precipitation. Theoretical and Applied Climatology, 2014. 116(1-2): p. 75-91.
  • 20. Batisani N, Yarnal B, Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Applied Geography, 2010. 30(4): p. 483-489.
  • 21. Kenabatho PK, Parida BP, Moalafhi DB, The value of large-scale climate variables in climate change assessment: The case of Botswana’s rainfall. Physics and Chemistry of the Earth, 2012. 50-52: p. 64-71.
  • 22. Da Silva VDPR, On climate variability in Northeast of Brazil. Journal of Arid Environments, 2004. 58(4): p. 575-596.
  • 23. Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J, Analysis of a 30-year rainfall record (1967-1997) in semi-arid SE spain for implications on vegetation. Journal of Arid Environments, 2001. 48(3): p. 373-395.
  • 24. Alemayehu A, Bewket W, Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler, Series A: Physical Geography, 2017. 99(2): p. 85-101.
  • 25. Groleau A, Mailhot A, Talbot G, Trend analysis of winter rainfall over southern Québec and New Brunswick (Canada). Atmosphere - Ocean, 2007. 45(3): p. 153-162.
  • 26. Muhire I, Ahmed F, Spatiotemporal trends in mean temperatures and aridity index over Rwanda. Theoretical and Applied Climatology, 2016. 123(1-2): p. 399-414.
  • 27. Recha JW, Mati BM, Nyasimi M, Kimeli PK, Kinyangi JM, Radeny M, Changing rainfall patterns and farmers’ adaptation through soil water management practices in semi-arid eastern Kenya. Arid Land Research and Management, 2016. 30(3): p. 229-238.
  • 28. Che Ros F, Tosaka H, Sidek LM, Basri H, Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management, 2016. 14(2): p. 151-163.
  • 29. Nenwiini S, Kabanda TA, Trends and Variability Assessment of Rainfall in Vhembe South Africa. Journal of Human Ecology, 2013. 42(2): p. 171-176.
  • 30. Ahokpossi Y, Analysis of the rainfall variability and change in the Republic of Benin (West Africa). Hydrological Sciences Journal, 2018. 63(15-16): p. 2097-2123.
  • 31. Wang Y, Xu Y, Tabari H, et al., Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 2020. 231(37): p. 104673.
  • 32. Elzopy KA, Chaturvedi AK, Chandran KM, Gopinath G, Naveena K, Surendran U, Trend analysis of long-term rainfall and temperature data for Ethiopia. South African Geographical Journal, 2021. 103(03): p. 381-394.
  • 33. Sezen C, Partal T, Wavelet combined innovative trend analysis for precipitation data in the Euphrates-Tigris basin, Turkey. Hydrological Sciences Journal, 2020. 65(11): p. 1909-1927.
  • 34. TOKGÖZ S, PARTAL T, Trend Analysis with Innovative Sen and Mann-Kendall methods of Annual Precipitation and Temperature data in the Black Sea Region. Journal of the Institute of Science and Technology, 2020. 10(2): p. 1107-1118.
  • 35. Harmse CJ, Du Toit JCO, Swanepoel A, Gerber HJ, Trend analysis of long-term rainfall data in the Upper Karoo of South Africa. Transactions of the Royal Society of South Africa, 2021. 76(1): p. 1-12.
  • 36. Rahardjo H, Nistor MM, Gofar N, Satyanaga A, Xiaosheng Q, Chui Yee SI, Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk, 2020. 14(3): p. 177-191.
  • 37. Byakatonda J, Parida BP, Moalafhi DB, Kenabatho PK, Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmospheric Research, 2018. 213(March): p. 492-508.
  • 38. Tsheko R, Rainfall reliability, drought and flood vulnerability in Botswana. Water SA, 2003. 29(4): p. 389-392.
  • 39. Byakatonda J, Parida BP, Kenabatho PK, Moalafhi DB, Prediction of onset and cessation of austral summer rainfall and dry spell frequency analysis in semiarid Botswana. Theoretical and Applied Climatology, 2019. 135(1-2): p. 101-117.
  • 40. Michiels P, Gabriels D, Hartmann R, Using the seasonal and temporal Precipitation concentration index for characterizing the monthly rainfall distribution in Spain. Catena, 1992. 19(1): p. 43-58.
  • 41. Mondal A, Khare D, Kundu S, Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology, 2015. 122(1-2): p. 143-158.
  • 42. He Y, Ye J, Yang X, Analysis of the spatio-temporal patterns of dry and wet conditions in the Huai River Basin using the standardized precipitation index. Atmospheric Research, 2015. 166: p. 120-128.
  • 43. Oguntunde PG, Lischeid G, Abiodun BJ, Dietrich O, Analysis of long-term dry and wet conditions over Nigeria. International Journal of Climatology, 2017. 37(9): p. 3577-3586.
  • 44. Wang X, Huang G, Liu J, Journal of geophysical research. Nature, 1955. 175(4449): p. 238.
  • 45. Janni W, Nitz U, Rack BK, et al., Pooled analysis of two randomized phase III trials (PlanB/SuccessC) comparing six cycles of docetaxel and cyclophosphamide to sequential anthracycline taxane chemotherapy in patients with intermediate and high risk HER2-negative early breast cancer (n=5,9). Journal of Clinical Oncology, 2018. 36(15_suppl): p. 522-522.
  • 46. PK. S, Estimates of the regression coefficient based on Kendall’s tau. Journal of the American statistical association, 1968. 63(324): p. 1379-1389.
  • 47. Tabari H, Somee BS, Zadeh MR, Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 2011. 100(1): p. 132-140.
  • 48. Tabari H, Hosseinzadeh Talaee P, Moisture index for Iran: Spatial and temporal analyses. Global and Planetary Change, 2013. 100: p. 11-19.
  • 49. Valli M, Sree KS, Krishna IVM, Analysis of Precipitation Concentration Index and Rainfall Prediction in various Agro-Climatic Zones of Andhra Pradesh , India. 2013. 2(5): p. 53-61.
  • 50. Araghi A, Mousavi-Baygi M, Adamowski J, Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theoretical and Applied Climatology, 2016. 125(1-2): p. 213-225.
  • 51. Ay M, Karaca ÖF, Yildiz AK, Comparison of Mann-Kendall and Sen’s innovative trend tests on measured monthly flows series of some streams in Euphrates-Tigris Basin Keywords. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergis, 2018. 34(1): p. 78-86.
  • 52. Huang J, Sun S, Zhang J, Detection of trends in precipitation during 1960-2008 in Jiangxi province, southeast China. Theoretical and Applied Climatology, 2013. 114(1-2): p. 237-251.

Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019

Yıl 2021, , 444 - 453, 15.12.2021
https://doi.org/10.35860/iarej.906557

Öz

Environments with a climatic characteristic of semi-aridity exhibit high rainfall variability, increasing significantly as the climate changes. In this study, rainfall concentration and Spatio-temporal trends in annual and seasonal (November to March) rainfall in Botswana were analyzed. The satellite data (1958-2019) is obtained from the Southern African Science Service Centre for Climate Change and Adaptive Land Management and the Climate Toolbox. The Mann–Kendall trend test (MK), autocorrelation function (ACF), relative percentage change (RPC), precipitation concentration index (PCI), and Theil–Sen's slope estimator (β) methods were adopted for data analysis. The regions include Gaborone, Maun, Francistown, Serowe, Kasane, Tsabong, Ghanzi, and Pandamatenga. The results indicated that the magnitude of change of change of the significant downward trends in the annual rainfall was found to be -1.11 mm/year at Maun, -1.62 mm/year at Ghanzi, -0.33 mm/year at Pandamatenga, and -0.25 mm/year at Tsabong. The magnitude of change of change of the significant downward trends in the seasonal rainfall was between -0.60 mm/year at Pandamatenga and -0.19 mm/year at Tsabong. All these regions, except Ghanzi, experienced a downward trend in the rainfall distribution. This is owing to the synoptic characteristic of the below-average geopotential heights over Ghanzi. Which might exacerbate the formation of convective systems, leading to a positive rainfall trend at Ghanzi. The annual calculated PCI values are divided into three classes; PCI>10≤15, PCI>16≤20, and PCI>20. The Mann-Kendall analysis of the PCI values indicates that all the regions experienced a downward rainfall trend, implying that it is heading toward a uniform to a moderate distribution. There were distinct patterns that emerged from the Pandamatenga region, indicating a strongly irregular distribution. The regions of Kasane, Maun and Francistown, demonstrated moderate to an irregular distribution. For Gaborone and Francistown, results showed occurrences of a moderate to strongly irregular distribution.

Kaynakça

  • 1. Fauchereau N., Trzaska S., Rouault M., Richard Y., Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Natural Hazards, 2003. 29(2): p. 139-154.
  • 2. Marumbwa FM, Cho MA, Chirwa PW, Analysis of spatio-temporal rainfall trends across southern African biomes between 1981 and 2016. Physics and Chemistry of the Earth, 2019. 114(August): p. 102808.
  • 3. Archer ERM, Landman WA, Tadross MA, et al., Understanding the evolution of the 2014–2016 summer rainfall seasons in southern Africa: Key lessons. Climate Risk Management, 2017. 16: p. 22-28.
  • 4. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt MT and HLM, IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.; 2007.
  • 5. Pachauri RK, Meyer LA, IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Published online 2014: p. 151.
  • 6. Ghosh S, Mujumdar PP, Climate change impact assessment: Uncertainty modeling with imprecise probability. Journal of Geophysical Research Atmospheres, 2009. 114(18).
  • 7. Ibrahim I, Usman MT, Abdulkadir A, Emigilati MA, Analysis of Rainfall Distribution, Temporal Trends, and Rates of Change in the Savannah Zones of Nigeria. Atmosphere - Ocean, 2020. 58(5): p. 351-360.
  • 8. Cook C, Reason CJC, Hewitson BC, Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region. Climate Research, 2004. 26(1): p. 17-31.
  • 9. Vuille M, Bradley RS, Healy R, et al., Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. Journal of Geophysical Research: Atmospheres, 2003. 108(6).
  • 10. Ahmadalipour A, Moradkhani H, Demirel MC, A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. Journal of Hydrology, 2017. 553: p. 785-797.
  • 11. Dubovyk O, Ghazaryan G, González J, Graw V, Löw F, Schreier J, Drought hazard in Kazakhstan in 2000–2016: a remote sensing perspective. Environmental Monitoring and Assessment, 2019. 191(8).
  • 12. Oguntunde PG, Abiodun BJ, Lischeid G, Rainfall trends in Nigeria, 1901-2000. Journal of Hydrology, 2011. 411(3-4): p. 207-218.
  • 13. Cannarozzo M, Noto L V., Viola F, Spatial distribution of rainfall trends in Sicily (1921-2000). Physics and Chemistry of the Earth, 2006. 31(18): p. 1201-1211.
  • 14. Ogunrinde AT, Oguntunde PG, Akinwumiju AS, Fasinmirin JT, Analysis of recent changes in rainfall and drought indices in Nigeria, 1981–2015. Hydrological Sciences Journal, 2019. 64(14): p. 1755-1768.
  • 15. Botswana Environment Statistics: Climate Digest. 2019. [cited 2021 01 February]; Available from: https://www.statsbots.org.bw/sites/default/files/publications/Climate%20Digest%20%202019.pdf.
  • 16. Adedoyin J. A. and Mphale K., Climate Variability : Its Impacts and Mechanism Within The Kalahari Transect of Southern Africa. in Mali Symposium on Applied Sciences. Bamako: p. 120-135.
  • 17. Matarira CH, Jury MR, Contrasting meteorological structure of intra‐seasonal wet and dry spells in Zimbabwe. International Journal of Climatology, 1992. 12(2): p. 165-176.
  • 18. Worldbank, Climate Change Knowledge Portal. [cited 2021 10 February]; Available from: https://climateknowledgeportal.worldbank.org/country/botswana/climate-data-historical.
  • 19. Mphale KM, Dash SK, Adedoyin A, Panda SK, Rainfall regime changes and trends in Botswana Kalahari Transect’s late summer precipitation. Theoretical and Applied Climatology, 2014. 116(1-2): p. 75-91.
  • 20. Batisani N, Yarnal B, Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Applied Geography, 2010. 30(4): p. 483-489.
  • 21. Kenabatho PK, Parida BP, Moalafhi DB, The value of large-scale climate variables in climate change assessment: The case of Botswana’s rainfall. Physics and Chemistry of the Earth, 2012. 50-52: p. 64-71.
  • 22. Da Silva VDPR, On climate variability in Northeast of Brazil. Journal of Arid Environments, 2004. 58(4): p. 575-596.
  • 23. Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J, Analysis of a 30-year rainfall record (1967-1997) in semi-arid SE spain for implications on vegetation. Journal of Arid Environments, 2001. 48(3): p. 373-395.
  • 24. Alemayehu A, Bewket W, Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler, Series A: Physical Geography, 2017. 99(2): p. 85-101.
  • 25. Groleau A, Mailhot A, Talbot G, Trend analysis of winter rainfall over southern Québec and New Brunswick (Canada). Atmosphere - Ocean, 2007. 45(3): p. 153-162.
  • 26. Muhire I, Ahmed F, Spatiotemporal trends in mean temperatures and aridity index over Rwanda. Theoretical and Applied Climatology, 2016. 123(1-2): p. 399-414.
  • 27. Recha JW, Mati BM, Nyasimi M, Kimeli PK, Kinyangi JM, Radeny M, Changing rainfall patterns and farmers’ adaptation through soil water management practices in semi-arid eastern Kenya. Arid Land Research and Management, 2016. 30(3): p. 229-238.
  • 28. Che Ros F, Tosaka H, Sidek LM, Basri H, Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management, 2016. 14(2): p. 151-163.
  • 29. Nenwiini S, Kabanda TA, Trends and Variability Assessment of Rainfall in Vhembe South Africa. Journal of Human Ecology, 2013. 42(2): p. 171-176.
  • 30. Ahokpossi Y, Analysis of the rainfall variability and change in the Republic of Benin (West Africa). Hydrological Sciences Journal, 2018. 63(15-16): p. 2097-2123.
  • 31. Wang Y, Xu Y, Tabari H, et al., Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 2020. 231(37): p. 104673.
  • 32. Elzopy KA, Chaturvedi AK, Chandran KM, Gopinath G, Naveena K, Surendran U, Trend analysis of long-term rainfall and temperature data for Ethiopia. South African Geographical Journal, 2021. 103(03): p. 381-394.
  • 33. Sezen C, Partal T, Wavelet combined innovative trend analysis for precipitation data in the Euphrates-Tigris basin, Turkey. Hydrological Sciences Journal, 2020. 65(11): p. 1909-1927.
  • 34. TOKGÖZ S, PARTAL T, Trend Analysis with Innovative Sen and Mann-Kendall methods of Annual Precipitation and Temperature data in the Black Sea Region. Journal of the Institute of Science and Technology, 2020. 10(2): p. 1107-1118.
  • 35. Harmse CJ, Du Toit JCO, Swanepoel A, Gerber HJ, Trend analysis of long-term rainfall data in the Upper Karoo of South Africa. Transactions of the Royal Society of South Africa, 2021. 76(1): p. 1-12.
  • 36. Rahardjo H, Nistor MM, Gofar N, Satyanaga A, Xiaosheng Q, Chui Yee SI, Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk, 2020. 14(3): p. 177-191.
  • 37. Byakatonda J, Parida BP, Moalafhi DB, Kenabatho PK, Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmospheric Research, 2018. 213(March): p. 492-508.
  • 38. Tsheko R, Rainfall reliability, drought and flood vulnerability in Botswana. Water SA, 2003. 29(4): p. 389-392.
  • 39. Byakatonda J, Parida BP, Kenabatho PK, Moalafhi DB, Prediction of onset and cessation of austral summer rainfall and dry spell frequency analysis in semiarid Botswana. Theoretical and Applied Climatology, 2019. 135(1-2): p. 101-117.
  • 40. Michiels P, Gabriels D, Hartmann R, Using the seasonal and temporal Precipitation concentration index for characterizing the monthly rainfall distribution in Spain. Catena, 1992. 19(1): p. 43-58.
  • 41. Mondal A, Khare D, Kundu S, Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology, 2015. 122(1-2): p. 143-158.
  • 42. He Y, Ye J, Yang X, Analysis of the spatio-temporal patterns of dry and wet conditions in the Huai River Basin using the standardized precipitation index. Atmospheric Research, 2015. 166: p. 120-128.
  • 43. Oguntunde PG, Lischeid G, Abiodun BJ, Dietrich O, Analysis of long-term dry and wet conditions over Nigeria. International Journal of Climatology, 2017. 37(9): p. 3577-3586.
  • 44. Wang X, Huang G, Liu J, Journal of geophysical research. Nature, 1955. 175(4449): p. 238.
  • 45. Janni W, Nitz U, Rack BK, et al., Pooled analysis of two randomized phase III trials (PlanB/SuccessC) comparing six cycles of docetaxel and cyclophosphamide to sequential anthracycline taxane chemotherapy in patients with intermediate and high risk HER2-negative early breast cancer (n=5,9). Journal of Clinical Oncology, 2018. 36(15_suppl): p. 522-522.
  • 46. PK. S, Estimates of the regression coefficient based on Kendall’s tau. Journal of the American statistical association, 1968. 63(324): p. 1379-1389.
  • 47. Tabari H, Somee BS, Zadeh MR, Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 2011. 100(1): p. 132-140.
  • 48. Tabari H, Hosseinzadeh Talaee P, Moisture index for Iran: Spatial and temporal analyses. Global and Planetary Change, 2013. 100: p. 11-19.
  • 49. Valli M, Sree KS, Krishna IVM, Analysis of Precipitation Concentration Index and Rainfall Prediction in various Agro-Climatic Zones of Andhra Pradesh , India. 2013. 2(5): p. 53-61.
  • 50. Araghi A, Mousavi-Baygi M, Adamowski J, Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theoretical and Applied Climatology, 2016. 125(1-2): p. 213-225.
  • 51. Ay M, Karaca ÖF, Yildiz AK, Comparison of Mann-Kendall and Sen’s innovative trend tests on measured monthly flows series of some streams in Euphrates-Tigris Basin Keywords. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergis, 2018. 34(1): p. 78-86.
  • 52. Huang J, Sun S, Zhang J, Detection of trends in precipitation during 1960-2008 in Jiangxi province, southeast China. Theoretical and Applied Climatology, 2013. 114(1-2): p. 237-251.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği, İnşaat Mühendisliği
Bölüm Research Articles
Yazarlar

Hüseyin Gökçekuş 0000-0001-5793-4937

Youssef Kassem 0000-0002-1451-5457

Lorato Precıous Mphınyane 0000-0003-0575-8710

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 31 Mart 2021
Kabul Tarihi 6 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Gökçekuş, H., Kassem, Y., & Mphınyane, L. P. (2021). Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019. International Advanced Researches and Engineering Journal, 5(3), 444-453. https://doi.org/10.35860/iarej.906557
AMA Gökçekuş H, Kassem Y, Mphınyane LP. Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019. Int. Adv. Res. Eng. J. Aralık 2021;5(3):444-453. doi:10.35860/iarej.906557
Chicago Gökçekuş, Hüseyin, Youssef Kassem, ve Lorato Precıous Mphınyane. “Analysis of Spatio-Temporal Rainfall Trends and Rainfall Variability in Botswana Between 1958 and 2019”. International Advanced Researches and Engineering Journal 5, sy. 3 (Aralık 2021): 444-53. https://doi.org/10.35860/iarej.906557.
EndNote Gökçekuş H, Kassem Y, Mphınyane LP (01 Aralık 2021) Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019. International Advanced Researches and Engineering Journal 5 3 444–453.
IEEE H. Gökçekuş, Y. Kassem, ve L. P. Mphınyane, “Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019”, Int. Adv. Res. Eng. J., c. 5, sy. 3, ss. 444–453, 2021, doi: 10.35860/iarej.906557.
ISNAD Gökçekuş, Hüseyin vd. “Analysis of Spatio-Temporal Rainfall Trends and Rainfall Variability in Botswana Between 1958 and 2019”. International Advanced Researches and Engineering Journal 5/3 (Aralık 2021), 444-453. https://doi.org/10.35860/iarej.906557.
JAMA Gökçekuş H, Kassem Y, Mphınyane LP. Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019. Int. Adv. Res. Eng. J. 2021;5:444–453.
MLA Gökçekuş, Hüseyin vd. “Analysis of Spatio-Temporal Rainfall Trends and Rainfall Variability in Botswana Between 1958 and 2019”. International Advanced Researches and Engineering Journal, c. 5, sy. 3, 2021, ss. 444-53, doi:10.35860/iarej.906557.
Vancouver Gökçekuş H, Kassem Y, Mphınyane LP. Analysis of Spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019. Int. Adv. Res. Eng. J. 2021;5(3):444-53.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.