Ab-initio calculations of structural, optical and electronic properties of AgBiS2
Year 2018,
Volume: 2 Issue: 1, 1 - 8, 15.04.2018
Gülten Kavak Balcı
,
Seyfettin Ayhan
Abstract
In this work, we use first-principles calculations based on density-functional theory generalized gradient approximation (Perdew Burke Ernzerhof, PBE). Cubic and hexagonal AgBiS2 structures have been performed using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method to investigate the structural, optical and electronic properties. We have calculated the ground-state energy, the lattice constant, DOS, band gap and dielectric constant of cubic and hexagonal AgBiS2 by using Wien2k packet. The calculated physical properties of silver bismuth sulfide are compared with the experimental results and good agreement was observed.
References
- 1. Samanta, L.K., S. Chatterjee, On the linear, nonlinear, and optoelectronic properties of some multinary compound semiconductors, Phys. Status Solidi B, 1994, 182, K85.
- 2. Aliev, S.A., S.S. Raginov, Thermoelectric Proper- ties of Ag–Sb–Te Materials, Neorg. Mater, 1992, 28- 329.
- 3. Saadi B. , D. Maouche, N. Bouarissa, Y. Medkour, First principles study of structural, electronic and optical properties of AgSbS2,Materials Science in Semiconductor Processing,16, 2013, 1439–1446
- 4. Tesfaye, F., Taskinen, P., Electrochemical study of the thermodynamic properties of matildite (β-AgBiS2) in different temperature and compositional ranges, Solid State Electrochem, 2014, 18:1683–1694
- 5. Hoang, K., S.M. Mahant, Atomic and electronic structures of I-V-VI2 ternary chalcogenides, Journal of Science: Advanced Materials and Devices Volume 1, Issue 1, March 2016, 51-56
- 6. Shen, G., D. Chen, K. Tang, Y. Qian, Polyol mediated synthesis of nanocrystalline M3SbS3 (M = Ag, Cu), J. Cryst. Growth 252, 2003, 199.
- 7. Nakamura, M., H. Nakamura, T. Ohsawa, M. Imura, K. Shimamura, N. Ohashi, AgBiS2 single crystal grown using slow cooling method and its characterization, Journal of Crystal Growth, 2015, 411, 1-3.
- 8. Pejova, B., D. Nesheva, Z. Aneva, A. Petrova, Photoconductivity and Relaxation Dynamics in Sonochemically Synthesized Assemblies of AgBiS2 Quantum Dots, J. Phys. Chem., 2011, C 115, 37.
- 9. Zdanowicza, T., T. Rodziewiczb, M. Zabkowska-Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations,Sol. Energy Mater. Sol. Cells ,2005, 87, 757-769.
- 10. Chen, D., G.Z. Shen, K.B. Tang, X. Jiang, L.Y. Huang, Y. Jin, Y.T. Qian, Microwave synthesis of AgBiS2 dendrites in aqueous solution, Inorg. Chem. Commun., 2003, 6, 710–712.
- 11. Yan, J., J. Yu, W. Zhang, Y. Li, X. Yang, A. Li, X. Yang, W. Wang, J. Wang, Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkyls lane, J. Mater. Sci. 2012, 47 4159–4166.
- 12 Liang, N., W. Chen, F. Dai, X. Wu,W. Zhang, Z. Li, J. Shen, S. Huang, Q. He, J. Zai, N. Fang and X. Qian, Homogenously hexagonal prismatic AgBiS2 nanocrystals: Controlled synthesis and application in quantum dot-sensitized solar cells. CrystEngComm, 2015, 17, 1902-1905.
- 13. Huang, P. C., Yang, W. C., and Lee, M. W., AgBiS2 Semiconductor-Sensitized Solar Cells, J. Phys. Chem. C, 2013, 117 (36), pp 18308–18314.
- 14. Satya N. G. and K. Biswas, Cation Disorder and Bond Anharmonicity Optimize the Thermoelectric Properties in Kinetically Stabilized Rocksalt AgBiS2 Nanocrystals, Chem. Mater., 2013, 25, 3225−3231.
- 15. Galler, S. and J.H., Wernick Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2 acta crystallographica, 1959,12, 46-54.
- 16. Perdew, J.P., J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C.Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B., 1992, 46, 6671.
- 17. Singh, D.J., Planes Waves, Pseudo-Potentials and the LAPW Method, Kluwer Academic Publishers, 1994, .Boston, Dortrecht, London.
- 18. Blaha, P., K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn Universitat Wien, Austria, 2001, ISBN:3-9501031-1-2.
- 19. Perdew, J.P., K. Burke, Y. Wang, Physical Review, Erratum: Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. 1996, B 54, 16533.
- 20. Perdew, J.P., S. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 1996, 773865.
- 21. Kervan, N. S. Kervan, A first-principle study of half-metallic ferrimagnetism in the Ti2CoGa Heusler compound, Journal of Magnetism and Magnetic Materials, 2012, 324, 4, 645-648.
- 22. Murnaghan, F.D., Proceedings of the National Academy of Sciences of the United States of America, 1947, 30, 244.
- 23. Mosayeb N., J. Jalilian, A.H. Reshak, Electronic and optical properties of pentagonal-B2C monolayer: A first-principlescalculation, Int. J. Mod. Phys. B, 2017, 31, 1750044.
- 24. Erdinc, B., M.N. Secuk, M. Aycibin, S.E. Gülebagan, E. K. Dogan, H. Akkus, Ab-initio Calculations of Structural, Electronic, Optical, Dynamic and Thermodynamic Properties of HgTe and HgSe, Computational Condensed Matter, 4, 2015, 6-12.
- 25. Setyawan, W., S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Computational Materials Science, 2010, 49, 299–312.
- 26. Hilal, M., R. Bahroz, S.H. Khan, A. Khan, Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature, Materials Chemistry and Physics, 2016, 184, 41-48.
Year 2018,
Volume: 2 Issue: 1, 1 - 8, 15.04.2018
Gülten Kavak Balcı
,
Seyfettin Ayhan
References
- 1. Samanta, L.K., S. Chatterjee, On the linear, nonlinear, and optoelectronic properties of some multinary compound semiconductors, Phys. Status Solidi B, 1994, 182, K85.
- 2. Aliev, S.A., S.S. Raginov, Thermoelectric Proper- ties of Ag–Sb–Te Materials, Neorg. Mater, 1992, 28- 329.
- 3. Saadi B. , D. Maouche, N. Bouarissa, Y. Medkour, First principles study of structural, electronic and optical properties of AgSbS2,Materials Science in Semiconductor Processing,16, 2013, 1439–1446
- 4. Tesfaye, F., Taskinen, P., Electrochemical study of the thermodynamic properties of matildite (β-AgBiS2) in different temperature and compositional ranges, Solid State Electrochem, 2014, 18:1683–1694
- 5. Hoang, K., S.M. Mahant, Atomic and electronic structures of I-V-VI2 ternary chalcogenides, Journal of Science: Advanced Materials and Devices Volume 1, Issue 1, March 2016, 51-56
- 6. Shen, G., D. Chen, K. Tang, Y. Qian, Polyol mediated synthesis of nanocrystalline M3SbS3 (M = Ag, Cu), J. Cryst. Growth 252, 2003, 199.
- 7. Nakamura, M., H. Nakamura, T. Ohsawa, M. Imura, K. Shimamura, N. Ohashi, AgBiS2 single crystal grown using slow cooling method and its characterization, Journal of Crystal Growth, 2015, 411, 1-3.
- 8. Pejova, B., D. Nesheva, Z. Aneva, A. Petrova, Photoconductivity and Relaxation Dynamics in Sonochemically Synthesized Assemblies of AgBiS2 Quantum Dots, J. Phys. Chem., 2011, C 115, 37.
- 9. Zdanowicza, T., T. Rodziewiczb, M. Zabkowska-Waclawek, Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations,Sol. Energy Mater. Sol. Cells ,2005, 87, 757-769.
- 10. Chen, D., G.Z. Shen, K.B. Tang, X. Jiang, L.Y. Huang, Y. Jin, Y.T. Qian, Microwave synthesis of AgBiS2 dendrites in aqueous solution, Inorg. Chem. Commun., 2003, 6, 710–712.
- 11. Yan, J., J. Yu, W. Zhang, Y. Li, X. Yang, A. Li, X. Yang, W. Wang, J. Wang, Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkyls lane, J. Mater. Sci. 2012, 47 4159–4166.
- 12 Liang, N., W. Chen, F. Dai, X. Wu,W. Zhang, Z. Li, J. Shen, S. Huang, Q. He, J. Zai, N. Fang and X. Qian, Homogenously hexagonal prismatic AgBiS2 nanocrystals: Controlled synthesis and application in quantum dot-sensitized solar cells. CrystEngComm, 2015, 17, 1902-1905.
- 13. Huang, P. C., Yang, W. C., and Lee, M. W., AgBiS2 Semiconductor-Sensitized Solar Cells, J. Phys. Chem. C, 2013, 117 (36), pp 18308–18314.
- 14. Satya N. G. and K. Biswas, Cation Disorder and Bond Anharmonicity Optimize the Thermoelectric Properties in Kinetically Stabilized Rocksalt AgBiS2 Nanocrystals, Chem. Mater., 2013, 25, 3225−3231.
- 15. Galler, S. and J.H., Wernick Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2 acta crystallographica, 1959,12, 46-54.
- 16. Perdew, J.P., J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C.Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B., 1992, 46, 6671.
- 17. Singh, D.J., Planes Waves, Pseudo-Potentials and the LAPW Method, Kluwer Academic Publishers, 1994, .Boston, Dortrecht, London.
- 18. Blaha, P., K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn Universitat Wien, Austria, 2001, ISBN:3-9501031-1-2.
- 19. Perdew, J.P., K. Burke, Y. Wang, Physical Review, Erratum: Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. 1996, B 54, 16533.
- 20. Perdew, J.P., S. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 1996, 773865.
- 21. Kervan, N. S. Kervan, A first-principle study of half-metallic ferrimagnetism in the Ti2CoGa Heusler compound, Journal of Magnetism and Magnetic Materials, 2012, 324, 4, 645-648.
- 22. Murnaghan, F.D., Proceedings of the National Academy of Sciences of the United States of America, 1947, 30, 244.
- 23. Mosayeb N., J. Jalilian, A.H. Reshak, Electronic and optical properties of pentagonal-B2C monolayer: A first-principlescalculation, Int. J. Mod. Phys. B, 2017, 31, 1750044.
- 24. Erdinc, B., M.N. Secuk, M. Aycibin, S.E. Gülebagan, E. K. Dogan, H. Akkus, Ab-initio Calculations of Structural, Electronic, Optical, Dynamic and Thermodynamic Properties of HgTe and HgSe, Computational Condensed Matter, 4, 2015, 6-12.
- 25. Setyawan, W., S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Computational Materials Science, 2010, 49, 299–312.
- 26. Hilal, M., R. Bahroz, S.H. Khan, A. Khan, Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature, Materials Chemistry and Physics, 2016, 184, 41-48.