Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 3, 245 - 253, 15.12.2018

Abstract

References

  • 1. Iravani, S., Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011. 13 (10): pp. 2638-2650.
  • 2. Haiza, H., A. Azizan, A. H. Mohidin, and D. S. C. Halin, Green synthesis of silver nanoparticles using local honey. In Nano Hybrids. Trans Tech Publications, 2013. 4: pp. 87-98.
  • 3. Jagtap, U.B. and V.A. Bapat, Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products, 2013. 46: p. 132-137.
  • 4. Veerasamy, R., T. Z. Xin, S. Gunasagaran, T. F. W. Xiang, E. F. C. Yang, N. Jeyakumar, S. A. Dhanaraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 2011. 15(2): pp. 113-120.
  • 5. Abdi, V., I. Sourinejad, M. Yousefzadi, and Z. Ghasemi, Mangrove-mediated synthesis of silver nanoparticles using native Avicennia marina plant extract from southern Iran. Chemical Engineering Communications, 2018. 205 (8): p. 1069–1076.
  • 6. Supraja, N., T. N. V. K. V. A. D. Prasad, Gandhi, D. Anbumani, P. Kavitha, and R. Babujanarthanam, Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochemistry and biophysics reports, 2018. 14: p. 69-77.
  • 7. Radini, I. A., N. Hasan, M. A. Malik, and Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 2018. 183: p. 154-163.
  • 8. Naghdi, S., M. Sajjadi, M. Nasrollahzadeh, K. Y. Rhee, S. M. Sajadi, and B. Jaleh, Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2018. 86, p. 158-173.
  • 9. Verma, D. K., A. P. Gupta, R. Dhakeray, Removal of heavy metals from whole sphere by plants working as bioindicators–a review, Basic Research Journal of Pharmaceutical Science, 2011. 1: p. 1-7.
  • 10. Ali, H., E. Khan, M. A. Sajad, Phytoremediation of heavy metals—concepts and applications. Chemosphere, 2013. 91 (7): p. 869-881.
  • 11. Özdemir, Z. and E. Demir, Nickel Accumlating species of Alyssum murale Waldst.&Kit from Fındıkpınarı-Erdemli/Mersin area. Journal of Geological Engineering, 2010. 34 (1): p. 57-70.
  • 12. Kouvaris, P., A. Delimitis, V. Zaspalis, D. Papadopoulos, S.A. Tsipas, and N. Michailidis, Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 2012. 76: p. 18-20.
  • 13. Weng, X., L. Huang, Z. Chen, M. Megharaj, and R. Naidu, Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products, 2013. 51: p. 342-347.
  • 14. Mekprasart W., S. Worasawat, T. Tangcharoen, W. Pecharapa, Characterization and effect of calcination temperature on structural properties of spinel zinc aluminate synthesized via Co‐precipitation process. Physica Status Solidi (c), 2015. 12(6): p. 624-627.
  • 15. Zhang, Z., D. Gao, H. Zhao, C. Xie, G. Guan, D. Wang, and S.H. Yu, Biomimetic assembly of polypeptide-stabilized CaCO3 nanoparticles. The Journal of Physical Chemistry B, 2006. 110(17): p. 8613-8618.
  • 16. Suganthi, K. S., K. S. Rajan, Effect of calcination temperature on the transport properties and colloidal stability of ZnO–water nanofluids. Asian Journal of Scientific Research, 2012. 5: p. 207-217.
  • 17. Pang, Y. X., X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. Journal of the European Ceramic Society, 2003. 23(10): p. 1697-1704.
  • 18. Gupta, S. M., M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 2011. 56(16): p. 1639-1657.
  • 19. Apalangya, V., V. Rangari, B. Tiimob, S. Jeelani, and T. Samuel, Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Applied Surface Science, 2014. 295: p. 108-114.
  • 20. Maleki Dizaj, S., F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, and K. Adibkia, Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artificial cells, nanomedicine, and biotechnology, 2017. 45(3): p. 535-543.
  • 21. Li, L., H. Zou, L. Shao, G. Wang, and J. Chen, Study on mechanical property of epoxy composite filled with nano-sized calcium carbonate particles. Journal of materials science, 2005. 40(5): p. 1297-1299.
  • 22. Sato, T., and J.J. Beaudoin, Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research, 2011. 23(1): p. 33-43.
  • 23. Barhoum A., H. Rahier, R.E. Abou-Zaied, M. Rehan, T. Dufour, G. Hill, and A. Dufresne, Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS applied materials & interfaces, 2014. 6(4): p. 2734-2744.

Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant

Year 2018, Volume: 2 Issue: 3, 245 - 253, 15.12.2018

Abstract

In this study, the
biosynthesis and characterization of
CaCO3 nanoparticles from the leach solution and the aqueous extract
of Myrtus communis plant were carried out. The leach
solution obtained by leaching from the leaves and branches of M. communis growing around Mersin
University Çiftlikköy Campus were analyzed by ICP-MS and it was found to be a
calcium accumulator plant. Then, CaCO3 nanoparticles were
biosynthesized by adding of the leaf extract, as a biological agent, prepared
by the extraction with distilled water of the leaves of same plant to the leach
solution under favorable conditions. The characterization of CaCO3 nanoparticles
was performed by XRD, EDX, and SEM analyses. XRD, EDX and SEM analysis results
showed that the biosynthesized nanoparticles were CaCO3 in nano
sizes and porous structures. Besides, the availability of the biosynthesized
CaCO3 nanoparticles in the color removal from different dyestuff
solutions was investigated; the highest color removal yield was determined to
be 90% at the end of 5 min for basic Methylene Blue (MB) dyestuff.

References

  • 1. Iravani, S., Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011. 13 (10): pp. 2638-2650.
  • 2. Haiza, H., A. Azizan, A. H. Mohidin, and D. S. C. Halin, Green synthesis of silver nanoparticles using local honey. In Nano Hybrids. Trans Tech Publications, 2013. 4: pp. 87-98.
  • 3. Jagtap, U.B. and V.A. Bapat, Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products, 2013. 46: p. 132-137.
  • 4. Veerasamy, R., T. Z. Xin, S. Gunasagaran, T. F. W. Xiang, E. F. C. Yang, N. Jeyakumar, S. A. Dhanaraj, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 2011. 15(2): pp. 113-120.
  • 5. Abdi, V., I. Sourinejad, M. Yousefzadi, and Z. Ghasemi, Mangrove-mediated synthesis of silver nanoparticles using native Avicennia marina plant extract from southern Iran. Chemical Engineering Communications, 2018. 205 (8): p. 1069–1076.
  • 6. Supraja, N., T. N. V. K. V. A. D. Prasad, Gandhi, D. Anbumani, P. Kavitha, and R. Babujanarthanam, Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochemistry and biophysics reports, 2018. 14: p. 69-77.
  • 7. Radini, I. A., N. Hasan, M. A. Malik, and Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 2018. 183: p. 154-163.
  • 8. Naghdi, S., M. Sajjadi, M. Nasrollahzadeh, K. Y. Rhee, S. M. Sajadi, and B. Jaleh, Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2018. 86, p. 158-173.
  • 9. Verma, D. K., A. P. Gupta, R. Dhakeray, Removal of heavy metals from whole sphere by plants working as bioindicators–a review, Basic Research Journal of Pharmaceutical Science, 2011. 1: p. 1-7.
  • 10. Ali, H., E. Khan, M. A. Sajad, Phytoremediation of heavy metals—concepts and applications. Chemosphere, 2013. 91 (7): p. 869-881.
  • 11. Özdemir, Z. and E. Demir, Nickel Accumlating species of Alyssum murale Waldst.&Kit from Fındıkpınarı-Erdemli/Mersin area. Journal of Geological Engineering, 2010. 34 (1): p. 57-70.
  • 12. Kouvaris, P., A. Delimitis, V. Zaspalis, D. Papadopoulos, S.A. Tsipas, and N. Michailidis, Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 2012. 76: p. 18-20.
  • 13. Weng, X., L. Huang, Z. Chen, M. Megharaj, and R. Naidu, Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products, 2013. 51: p. 342-347.
  • 14. Mekprasart W., S. Worasawat, T. Tangcharoen, W. Pecharapa, Characterization and effect of calcination temperature on structural properties of spinel zinc aluminate synthesized via Co‐precipitation process. Physica Status Solidi (c), 2015. 12(6): p. 624-627.
  • 15. Zhang, Z., D. Gao, H. Zhao, C. Xie, G. Guan, D. Wang, and S.H. Yu, Biomimetic assembly of polypeptide-stabilized CaCO3 nanoparticles. The Journal of Physical Chemistry B, 2006. 110(17): p. 8613-8618.
  • 16. Suganthi, K. S., K. S. Rajan, Effect of calcination temperature on the transport properties and colloidal stability of ZnO–water nanofluids. Asian Journal of Scientific Research, 2012. 5: p. 207-217.
  • 17. Pang, Y. X., X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. Journal of the European Ceramic Society, 2003. 23(10): p. 1697-1704.
  • 18. Gupta, S. M., M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 2011. 56(16): p. 1639-1657.
  • 19. Apalangya, V., V. Rangari, B. Tiimob, S. Jeelani, and T. Samuel, Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Applied Surface Science, 2014. 295: p. 108-114.
  • 20. Maleki Dizaj, S., F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, and K. Adibkia, Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artificial cells, nanomedicine, and biotechnology, 2017. 45(3): p. 535-543.
  • 21. Li, L., H. Zou, L. Shao, G. Wang, and J. Chen, Study on mechanical property of epoxy composite filled with nano-sized calcium carbonate particles. Journal of materials science, 2005. 40(5): p. 1297-1299.
  • 22. Sato, T., and J.J. Beaudoin, Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research, 2011. 23(1): p. 33-43.
  • 23. Barhoum A., H. Rahier, R.E. Abou-Zaied, M. Rehan, T. Dufour, G. Hill, and A. Dufresne, Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS applied materials & interfaces, 2014. 6(4): p. 2734-2744.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Deniz Uzunoğlu

Ayla Özer This is me

Publication Date December 15, 2018
Submission Date March 8, 2018
Acceptance Date August 3, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Uzunoğlu, D., & Özer, A. (2018). Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant. International Advanced Researches and Engineering Journal, 2(3), 245-253.
AMA Uzunoğlu D, Özer A. Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant. Int. Adv. Res. Eng. J. December 2018;2(3):245-253.
Chicago Uzunoğlu, Deniz, and Ayla Özer. “Biosynthesis and Characterization of CaCO3 Nanoparticles from the Leach Solution and the Aqueous Extract of Myrtus Communis Plant”. International Advanced Researches and Engineering Journal 2, no. 3 (December 2018): 245-53.
EndNote Uzunoğlu D, Özer A (December 1, 2018) Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant. International Advanced Researches and Engineering Journal 2 3 245–253.
IEEE D. Uzunoğlu and A. Özer, “Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant”, Int. Adv. Res. Eng. J., vol. 2, no. 3, pp. 245–253, 2018.
ISNAD Uzunoğlu, Deniz - Özer, Ayla. “Biosynthesis and Characterization of CaCO3 Nanoparticles from the Leach Solution and the Aqueous Extract of Myrtus Communis Plant”. International Advanced Researches and Engineering Journal 2/3 (December 2018), 245-253.
JAMA Uzunoğlu D, Özer A. Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant. Int. Adv. Res. Eng. J. 2018;2:245–253.
MLA Uzunoğlu, Deniz and Ayla Özer. “Biosynthesis and Characterization of CaCO3 Nanoparticles from the Leach Solution and the Aqueous Extract of Myrtus Communis Plant”. International Advanced Researches and Engineering Journal, vol. 2, no. 3, 2018, pp. 245-53.
Vancouver Uzunoğlu D, Özer A. Biosynthesis and characterization of CaCO3 nanoparticles from the leach solution and the aqueous extract of Myrtus communis plant. Int. Adv. Res. Eng. J. 2018;2(3):245-53.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.