Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 3, 309 - 314, 15.12.2018

Abstract

References

  • 1. Tuna, M., Fidan, C.B., Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point. Optik-International Journal for Light and Electron Optics, 2016. 127(24): p. 11786-11799.
  • 2. Belkhouja, T., Mohamed, A., Al-Ali, A.K., Du, X., Guizani, M., Light-weight encryption of wireless communication for implantable medical devices using henon chaotic system. In Wireless Networks and Mobile Communications (WINCOM), IEEE 2017 International Conference on. p. 1-6.
  • 3. Wang, X., Akgul, A., Cicek, S., Pham, V. T., & Hoang, D. V., A chaotic system with two stable equilibrium points: Dynamics, circuit realization and communication application. International Journal of Bifurcation and Chaos, 2017. 27(08): p. 1750130.
  • 4. Ji Y, Zhang M, Wang Y, Wang P, Wang A, Wu Y, et al., Microwave-Photonic Sensor for Remote Water-Level Monitoring Based on Chaotic Laser. International Journal of Bifurcation and Chaos, 2014. 24: 1450032.
  • 5. Ashita S, Uma G, Deivasundari P. Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter. IET Power Electronics, 2014. 7: p. 289–98.
  • 6. Pomares J., Perea I., Torres F., Dynamic Visual Servoing With Chaos Control for Redundant Robots. IEEE/ASME Transactions on Mechatronics, 2014. 19: p. 423–31.
  • 7. Alçın, M., The Modelling Performance Evolution of Recurrent Neural Networks Having Different Training Functions for Modelling Sprott H Chaotic System. Int. Journal on Research Innovations in Engineering Science and Technology, 2017. 2(10): p. 563–568.
  • 8. Alçın M, Pehlivan İ, Koyuncu İ, Hardware design and implementation of a novel ANN-based chaotic generator in FPGA. Elsevier, Optik-International Journal for Light and Electron Optics, 2016. 127(13): p. 5500-5505.
  • 9. Koyuncu İ, Şahin İ, Gloster C, Sarıtekin N.K., A Neuron Library for Rapid Realization of Artificial Neural Networks on FPGA: A Case Study of Rössler Chaotic System. Journal of Circuits, Systems and Computers, 2017. 26(01): p. 1750015.
  • 10. Avaroğlu, E., Pseudorandom number generator based on Arnold cat map and statistical analysis. Turkish Journal of Electrical Engineering & Computer Sciences, 2017. 25(1): p. 633-643.
  • 11. Fidan, C. B., Tuna M., A Study on the importance of chaotic oscillators based on FPGA for true random number generating (TRNG) and chaotic systems. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018. 33(2): p. 469-486.
  • 12. Shi, K., Tang, Y., Liu, X., & Zhong, S., Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA transactions, 2017. 66: p. 185-199.
  • 13. Çavuşoğlu Ü., Kaçar S., Pehlivan İ., Zengin A., Secure image encryption algorithm design using a novel chaos based S-Box. Chaos, Solitons Fractals, 2017. 95: p. 92-101.
  • 14. Heidari, A.A., Abbaspour, R.A., Jordehi, A.R., An efficient chaotic water cycle algorithm for optimization tasks. Neural Computing and Appl., 2017. 28(1): p. 57-85.
  • 15. Sharma, N., Saini, I., Yadav, A. K., & Singh, P. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding. 3D Research, 2017. 8(4): p. 39.
  • 16. Vaidyanathan, S., Rasappan, S., Global chaos synchronization of n-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 2014. 39(4): p. 3351-3364.
  • 17. Alcın, M., Pehlivan, I., Koyuncu, I., The Performance Analysis of Artificial Neural Network Based Shimizu-Morioka Chaotic System with Respect to Sample Numbers. Balkan Journal of Electrical and Computer Engineering, 2015. 3(4), p. 252–255.
  • 18. Yu, S.H., Kang, H.S., Kim, Y.T., Hyun, C.H., Park, M., Fuzzy adaptive modular design of uncertain chaotic duffing oscillators. International Journal of Control Automation and Systems, 2014. 12(1): 188-194.
  • 19. Alcin, M., The Effect on Modelling Performance of Different Activation Functions for Feed Forward and Feedback Network Structures in Modeling of Chen Chaotic System. International Journal of Scientific and Technological Research, 2017. 7(3): p. 60-70.
  • 20. Jafari, S., Ahmadi, A., Khalaf, A.J.M., Abdolmohammadi, H.R., Pham, V.T., Alsaadi, F.E., A new hidden chaotic attractor with extreme multi-stability. AEU-International Journal of Electronics and Communications, 2018. 89 (May): p. 131-135.
  • 21. Azar, A. T., Volos, C., Gerodimos, N. A., Tombras, G. S., Pham, V. T., Radwan, A. G., Pacheco, J. M., A novel chaotic system without equilibrium: dynamics, synchronization, and circuit realization. Complexity, 2017. ID:7871467.
  • 22. Tuna, M., Fidan, C. B., Koyuncu, İ., Pehlivan, İ., Real time hardware implementation of the 3D chaotic oscillator which having golden-section equilibra. IEEE 24 th In Signal Processing and Communication Application Conference (SIU), May 2016. p. 1309-1312.
  • 23. Zhong Z., Guanrong C., Simin Y., Hyperchaotic signal generation via DSP for efficient perturbations to liquid mixing. Int. J. Circuit Theory Appl., 2009. 37: p. 31-41.
  • 24. Yiwei Z., Zexiang L., Xinjian Z., A chaos-based image encryption ASIC using reconfigurable logic. IEEE Asia Pacific Conference on Circuits and Systems, Macao-China, December, 2008. p. 1782-1785.
  • 25. Kaçar S., Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system. Optik, 2016. 127: p. 9551-9561.
  • 26. Koyuncu, I., Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA. Advances in Electrical and Computer Engineering, 2018. 18(3): p. 1-8.
  • 27. Rajagopal, K., Akgul, A., Jafari, S., Karthikeyan, A., Koyuncu, I., Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos, Solitons & Fractals, 2017. 103: p. 476-487.
  • 28. Azzaz M.S., Taugast C., Sadoudi S., Fellah R., Dandache A., A new auto-switched chaotic system and its FPGA implementation. Commun. Nonlinear Sci. Numer. Simul., 2013. 18 (7): p. 1792-1804.
  • 29. Lai, Q., Zhao, X. W., Rajagopal, K., Xu, G., Akgul, A., & Guleryuz, E., Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system. Pramana, 2018. 90(1), p. 6.
  • 30. Tlelo-Cuautle E., Pa-Azucena A.D., Rangel-Magdale J.J., Carbajal-Gomez V.H., Rodriguez-Gomez G., Generating a 50-scroll chaotic attractor at 66MHz by using FPGAs. Nonlinear Dyn, 2016. 85(4): p. 1-15.
  • 31. Sadoudi S., Mohamed SA., Mustapha D., Mustapha B. An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. International Journal of nonlinear Science, 2009. 7(4): 467-474.
  • 32. Rajagopal, K., Jafari, S., Laarem, G., Time-delayed chameleon: Analysis, synchronization and FPGA implementation. Pramana – J. Phys., 2017. 89: 92. https://doi.org/10.1007/s12043-017-1487-8.
  • 33. Vaidyanathan, S., Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. International Journal of PharmTech Research, 2015. 8(6): p. 106–116.
  • 34. Kuon, I., Tessier, R., Rose, J., FPGA architecture: survey and challenges. Foundations and Trends in Electr. Design Autom., 2017. 2(2): p. 135–253.
  • 35. Munden, R., ASIC and FPGA verification: a guide to component modeling. 2005, San Francisco, USA: Morgan Kaufmann Publ., Elsevier.
  • 36. Xilinx, [cited 2018 29 June]; Available from: http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-combined-product-table.pdf.
  • 37. Sarıtaş, E., Karataş, S., Her yönüyle FPGA ve VHDL. 2013, Ankara: Palme Yayıncılık.
  • 38. Karakaya, B., Türk, M. A., Türk, M., Gülten, A., Selection of Optimal Numerical Method for Implementation of Lorenz Chaotic System on FPGA. International Advanced Researches and Engineering Journal, IAREJ, 2018.
  • 39. Tuna, M., Koyuncu, İ., Fidan, C. B., Pehlivan, İ., Real Time Implementation of A Novel Chaotic Generator on FPGA. 23rd IEEE Signal Processing and Communications Applications Conference, Malatya, 2015. p. 698-701.
  • 40. Lai, Q., Zhao, X. W., Rajagopal, K., Xu, G., Akgul, A., Guleryuz, E., Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system. Pramana, 2018. 90(6): p. 1-12.

Design and implementation of the FPGA-based chaotic van der pol oscillator

Year 2018, Volume: 2 Issue: 3, 309 - 314, 15.12.2018

Abstract

In this study, the chaotic
Van der Pol system was implemented for real-time chaos applications on FPGA
chip. The chaotic Van der Pol system was also modelled numerically by using the
Euler algorithm ODE (Ordinary Differential Equation) solver on Matlab.
Numerical structure of the chaotic Van der Pol oscillator designed on Matlab was
taken as reference for the design of FPGA-based chaotic Van der Pol oscillator
unit. The chaotic Van der Pol system was coded in Very High-Speed Integrated
Circuits Hardware Description Language (VHDL) with 32-bit IEEE-754-1985
floating point number standard. The designed chaotic Van der Pol system was
synthesized in the Xilinx ISE Project Navigator program and was implemented on
the Xilinx VIRTEX-6 chip family, XC6VLX75T device, FF784 package. The maximum
operating frequency of the FPGA-based chaotic Van der Pol oscillator unit
obtained from Place and Route processes was 498.728 MHz. Additionally, chip
statistics of the FPGA-based Van der Pol oscillator were presented.

References

  • 1. Tuna, M., Fidan, C.B., Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point. Optik-International Journal for Light and Electron Optics, 2016. 127(24): p. 11786-11799.
  • 2. Belkhouja, T., Mohamed, A., Al-Ali, A.K., Du, X., Guizani, M., Light-weight encryption of wireless communication for implantable medical devices using henon chaotic system. In Wireless Networks and Mobile Communications (WINCOM), IEEE 2017 International Conference on. p. 1-6.
  • 3. Wang, X., Akgul, A., Cicek, S., Pham, V. T., & Hoang, D. V., A chaotic system with two stable equilibrium points: Dynamics, circuit realization and communication application. International Journal of Bifurcation and Chaos, 2017. 27(08): p. 1750130.
  • 4. Ji Y, Zhang M, Wang Y, Wang P, Wang A, Wu Y, et al., Microwave-Photonic Sensor for Remote Water-Level Monitoring Based on Chaotic Laser. International Journal of Bifurcation and Chaos, 2014. 24: 1450032.
  • 5. Ashita S, Uma G, Deivasundari P. Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter. IET Power Electronics, 2014. 7: p. 289–98.
  • 6. Pomares J., Perea I., Torres F., Dynamic Visual Servoing With Chaos Control for Redundant Robots. IEEE/ASME Transactions on Mechatronics, 2014. 19: p. 423–31.
  • 7. Alçın, M., The Modelling Performance Evolution of Recurrent Neural Networks Having Different Training Functions for Modelling Sprott H Chaotic System. Int. Journal on Research Innovations in Engineering Science and Technology, 2017. 2(10): p. 563–568.
  • 8. Alçın M, Pehlivan İ, Koyuncu İ, Hardware design and implementation of a novel ANN-based chaotic generator in FPGA. Elsevier, Optik-International Journal for Light and Electron Optics, 2016. 127(13): p. 5500-5505.
  • 9. Koyuncu İ, Şahin İ, Gloster C, Sarıtekin N.K., A Neuron Library for Rapid Realization of Artificial Neural Networks on FPGA: A Case Study of Rössler Chaotic System. Journal of Circuits, Systems and Computers, 2017. 26(01): p. 1750015.
  • 10. Avaroğlu, E., Pseudorandom number generator based on Arnold cat map and statistical analysis. Turkish Journal of Electrical Engineering & Computer Sciences, 2017. 25(1): p. 633-643.
  • 11. Fidan, C. B., Tuna M., A Study on the importance of chaotic oscillators based on FPGA for true random number generating (TRNG) and chaotic systems. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018. 33(2): p. 469-486.
  • 12. Shi, K., Tang, Y., Liu, X., & Zhong, S., Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA transactions, 2017. 66: p. 185-199.
  • 13. Çavuşoğlu Ü., Kaçar S., Pehlivan İ., Zengin A., Secure image encryption algorithm design using a novel chaos based S-Box. Chaos, Solitons Fractals, 2017. 95: p. 92-101.
  • 14. Heidari, A.A., Abbaspour, R.A., Jordehi, A.R., An efficient chaotic water cycle algorithm for optimization tasks. Neural Computing and Appl., 2017. 28(1): p. 57-85.
  • 15. Sharma, N., Saini, I., Yadav, A. K., & Singh, P. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding. 3D Research, 2017. 8(4): p. 39.
  • 16. Vaidyanathan, S., Rasappan, S., Global chaos synchronization of n-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 2014. 39(4): p. 3351-3364.
  • 17. Alcın, M., Pehlivan, I., Koyuncu, I., The Performance Analysis of Artificial Neural Network Based Shimizu-Morioka Chaotic System with Respect to Sample Numbers. Balkan Journal of Electrical and Computer Engineering, 2015. 3(4), p. 252–255.
  • 18. Yu, S.H., Kang, H.S., Kim, Y.T., Hyun, C.H., Park, M., Fuzzy adaptive modular design of uncertain chaotic duffing oscillators. International Journal of Control Automation and Systems, 2014. 12(1): 188-194.
  • 19. Alcin, M., The Effect on Modelling Performance of Different Activation Functions for Feed Forward and Feedback Network Structures in Modeling of Chen Chaotic System. International Journal of Scientific and Technological Research, 2017. 7(3): p. 60-70.
  • 20. Jafari, S., Ahmadi, A., Khalaf, A.J.M., Abdolmohammadi, H.R., Pham, V.T., Alsaadi, F.E., A new hidden chaotic attractor with extreme multi-stability. AEU-International Journal of Electronics and Communications, 2018. 89 (May): p. 131-135.
  • 21. Azar, A. T., Volos, C., Gerodimos, N. A., Tombras, G. S., Pham, V. T., Radwan, A. G., Pacheco, J. M., A novel chaotic system without equilibrium: dynamics, synchronization, and circuit realization. Complexity, 2017. ID:7871467.
  • 22. Tuna, M., Fidan, C. B., Koyuncu, İ., Pehlivan, İ., Real time hardware implementation of the 3D chaotic oscillator which having golden-section equilibra. IEEE 24 th In Signal Processing and Communication Application Conference (SIU), May 2016. p. 1309-1312.
  • 23. Zhong Z., Guanrong C., Simin Y., Hyperchaotic signal generation via DSP for efficient perturbations to liquid mixing. Int. J. Circuit Theory Appl., 2009. 37: p. 31-41.
  • 24. Yiwei Z., Zexiang L., Xinjian Z., A chaos-based image encryption ASIC using reconfigurable logic. IEEE Asia Pacific Conference on Circuits and Systems, Macao-China, December, 2008. p. 1782-1785.
  • 25. Kaçar S., Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system. Optik, 2016. 127: p. 9551-9561.
  • 26. Koyuncu, I., Implementation of High Speed Tangent Sigmoid Transfer Function Approximations for Artificial Neural Network Applications on FPGA. Advances in Electrical and Computer Engineering, 2018. 18(3): p. 1-8.
  • 27. Rajagopal, K., Akgul, A., Jafari, S., Karthikeyan, A., Koyuncu, I., Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos, Solitons & Fractals, 2017. 103: p. 476-487.
  • 28. Azzaz M.S., Taugast C., Sadoudi S., Fellah R., Dandache A., A new auto-switched chaotic system and its FPGA implementation. Commun. Nonlinear Sci. Numer. Simul., 2013. 18 (7): p. 1792-1804.
  • 29. Lai, Q., Zhao, X. W., Rajagopal, K., Xu, G., Akgul, A., & Guleryuz, E., Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system. Pramana, 2018. 90(1), p. 6.
  • 30. Tlelo-Cuautle E., Pa-Azucena A.D., Rangel-Magdale J.J., Carbajal-Gomez V.H., Rodriguez-Gomez G., Generating a 50-scroll chaotic attractor at 66MHz by using FPGAs. Nonlinear Dyn, 2016. 85(4): p. 1-15.
  • 31. Sadoudi S., Mohamed SA., Mustapha D., Mustapha B. An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. International Journal of nonlinear Science, 2009. 7(4): 467-474.
  • 32. Rajagopal, K., Jafari, S., Laarem, G., Time-delayed chameleon: Analysis, synchronization and FPGA implementation. Pramana – J. Phys., 2017. 89: 92. https://doi.org/10.1007/s12043-017-1487-8.
  • 33. Vaidyanathan, S., Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. International Journal of PharmTech Research, 2015. 8(6): p. 106–116.
  • 34. Kuon, I., Tessier, R., Rose, J., FPGA architecture: survey and challenges. Foundations and Trends in Electr. Design Autom., 2017. 2(2): p. 135–253.
  • 35. Munden, R., ASIC and FPGA verification: a guide to component modeling. 2005, San Francisco, USA: Morgan Kaufmann Publ., Elsevier.
  • 36. Xilinx, [cited 2018 29 June]; Available from: http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-combined-product-table.pdf.
  • 37. Sarıtaş, E., Karataş, S., Her yönüyle FPGA ve VHDL. 2013, Ankara: Palme Yayıncılık.
  • 38. Karakaya, B., Türk, M. A., Türk, M., Gülten, A., Selection of Optimal Numerical Method for Implementation of Lorenz Chaotic System on FPGA. International Advanced Researches and Engineering Journal, IAREJ, 2018.
  • 39. Tuna, M., Koyuncu, İ., Fidan, C. B., Pehlivan, İ., Real Time Implementation of A Novel Chaotic Generator on FPGA. 23rd IEEE Signal Processing and Communications Applications Conference, Malatya, 2015. p. 698-701.
  • 40. Lai, Q., Zhao, X. W., Rajagopal, K., Xu, G., Akgul, A., Guleryuz, E., Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system. Pramana, 2018. 90(6): p. 1-12.
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Mustafa Dursun

Elif Kaşifoğlu

Publication Date December 15, 2018
Submission Date May 28, 2018
Acceptance Date June 25, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Dursun, M., & Kaşifoğlu, E. (2018). Design and implementation of the FPGA-based chaotic van der pol oscillator. International Advanced Researches and Engineering Journal, 2(3), 309-314.
AMA Dursun M, Kaşifoğlu E. Design and implementation of the FPGA-based chaotic van der pol oscillator. Int. Adv. Res. Eng. J. December 2018;2(3):309-314.
Chicago Dursun, Mustafa, and Elif Kaşifoğlu. “Design and Implementation of the FPGA-Based Chaotic Van Der Pol Oscillator”. International Advanced Researches and Engineering Journal 2, no. 3 (December 2018): 309-14.
EndNote Dursun M, Kaşifoğlu E (December 1, 2018) Design and implementation of the FPGA-based chaotic van der pol oscillator. International Advanced Researches and Engineering Journal 2 3 309–314.
IEEE M. Dursun and E. Kaşifoğlu, “Design and implementation of the FPGA-based chaotic van der pol oscillator”, Int. Adv. Res. Eng. J., vol. 2, no. 3, pp. 309–314, 2018.
ISNAD Dursun, Mustafa - Kaşifoğlu, Elif. “Design and Implementation of the FPGA-Based Chaotic Van Der Pol Oscillator”. International Advanced Researches and Engineering Journal 2/3 (December 2018), 309-314.
JAMA Dursun M, Kaşifoğlu E. Design and implementation of the FPGA-based chaotic van der pol oscillator. Int. Adv. Res. Eng. J. 2018;2:309–314.
MLA Dursun, Mustafa and Elif Kaşifoğlu. “Design and Implementation of the FPGA-Based Chaotic Van Der Pol Oscillator”. International Advanced Researches and Engineering Journal, vol. 2, no. 3, 2018, pp. 309-14.
Vancouver Dursun M, Kaşifoğlu E. Design and implementation of the FPGA-based chaotic van der pol oscillator. Int. Adv. Res. Eng. J. 2018;2(3):309-14.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.