Araştırma Makalesi
PDF EndNote BibTex Kaynak Göster

Yıl 2019, Cilt 3, Sayı 3, 170 - 174, 15.12.2019
https://doi.org/10.35860/iarej.475136

Öz

Kaynakça

  • 1. Aamodt, J.M., and D.W. Grainger, Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials, 2016. 86: p. 68-82.
  • 2. Gümüşderelioğlu, M., B. Maviş, A. Karakeçili, A.S. Kahraman, S. Çakmak, S. Tığlı, T.T. Demirtaş, and S. Aday, Doku mühendisliğinde nanoteknoloji. Bilim ve Teknik Dergisi Yeni Ufuklara, 2007.
  • 3. Patel, N.R., and P.P. Gohil, A review on biomaterials: scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2012. 2(4): p. 91-101.
  • 4. Place, E.S, N.D Evans, and M.M. Stevens, Complexity in biomaterials for tissue engineering. Nature materials, 2009. 8(6): p. 457-470.
  • 5. Koruyucu, A. Evaluation of crosslinking type and antibacterial activities of copper oxide loaded cotton textile fabrics. International Advanced Researches and Engineering Journal, 2018. 2(3): p. 278-281.
  • 6. Gümüşderelioğlu, M., Biyomalzemeler. Tübitak, 2002.
  • 7. Kumar, A., R. Mishra, Y. Reinwald, and S. Bhat, Cryogels: Freezing unveiled by thawing. Materials Today, 2010. 13(11): p. 42-44.
  • 8. Değirmenci, E., Polivinil Alkol Membranlara İtakonik Asit Aşılanması. 2006.
  • 9. Lozinsky, V.I, and F.M. Plieva, Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 1998. 23(3-4): p. 227-242.
  • 10. Çırak, T., Preparation and characterization of active agent loaded polymeric scaffolds for ophthalmologic applications. 2008.
  • 11. Demir, D., F. Öfkeli, S. Ceylan, and N. Bölgen, Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016. 3(3): p. 131-144.
  • 12. Ji, C., N. Annabi, A. Khademhosseini, and F. Dehghani, Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 2011. 7(4): p. 1653-1664.
  • 13. Budianto, E., S.P. Muthoharoh, and N.M. Nizardo, Effect of crosslinking agents, pH and temperature on swelling behavior of cross-linked chitosan hydrogel. Asian Journal of Applied Sciences, 2015. 3(05): p. 581-588.
  • 14. Beppu, M.M., R.S. Vieira, C.G. Aimoli, and C.C. Santana, Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. Journal of Membrane Science, 2007. 301(1-2): p. 126-130.
  • 15. Li, B., C-L. Shan, Q. Zhou, Y. Fang, Y-L. Wang, F. Xu, L-R. Han, M. Ibrahim, L-B. Guo, and G-L. Xie, Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine Drugs, 2013. 11(5): p. 1534-1552.
  • 16. Ostrowska-Czubenko, J., M. Gierszewska, and M. Pieróg, pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. Journal of Polymer Research, 2015. 22(8): p. 1-12.
  • 17. Yetiskin, B., C. Akinci, and O. Okay, Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures. Polymer, 2017. 128: p. 47-56.
  • 18. Ran, D., Y. Wang, X. Jia, and C. Nie, Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures. Analytica Chimica Acta, 2012. 723: p. 45-53.
  • 19. Nazemi, K., F. Moztarzadeh, N. Jalali, S. Asgari, and M. Mozafari, Synthesis and characterization of poly (lactic-co-glycolic) acid nanoparticles-loaded chitosan/bioactive glass scaffolds as a localized delivery system in the bone defects. BioMed research international, 2014. 2014: p. 1-9.
  • 20. Çetinkaya, Z., D. Demir, and N. Bölgen, Fish skin ısolated collagen cryogels for tissue engineering applications: purification, synthesis and characterization. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016. 3(3): p. 329-348.

Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications

Yıl 2019, Cilt 3, Sayı 3, 170 - 174, 15.12.2019
https://doi.org/10.35860/iarej.475136

Öz

Chitosan is a natural polymer synthesized from the chitin of crab, lobster shells, fungal mycelia and shrimp. It has been used for biomedical applications in many different structures including thin film, nanofibrous membrane, sponge, microsphere, hydrogel and cryogel because of its non-toxicity, biodegradability, biocompatibility and antibacterial properties. Cryogelation technique is based on the crosslinking of polymers or crosslinking polymerization of monomers in the presence of crosslinking agents at temperatures below zero. On the other hand, hydrogels are mainly prepared at room temperature. In this study, chitosan gels were prepared at different reaction temperatures (-25, 0 and +25°C). Swelling profiles revealed that with decreasing reaction temperature swelling ratio increased. In addition, the degradation rate of chitosan gels prepared at -25 and +25°C was measured 50.60 and 30.88%, respectively. Results indicate that reaction temperature affects the architecture and characterization results of the gels. 

Kaynakça

  • 1. Aamodt, J.M., and D.W. Grainger, Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials, 2016. 86: p. 68-82.
  • 2. Gümüşderelioğlu, M., B. Maviş, A. Karakeçili, A.S. Kahraman, S. Çakmak, S. Tığlı, T.T. Demirtaş, and S. Aday, Doku mühendisliğinde nanoteknoloji. Bilim ve Teknik Dergisi Yeni Ufuklara, 2007.
  • 3. Patel, N.R., and P.P. Gohil, A review on biomaterials: scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2012. 2(4): p. 91-101.
  • 4. Place, E.S, N.D Evans, and M.M. Stevens, Complexity in biomaterials for tissue engineering. Nature materials, 2009. 8(6): p. 457-470.
  • 5. Koruyucu, A. Evaluation of crosslinking type and antibacterial activities of copper oxide loaded cotton textile fabrics. International Advanced Researches and Engineering Journal, 2018. 2(3): p. 278-281.
  • 6. Gümüşderelioğlu, M., Biyomalzemeler. Tübitak, 2002.
  • 7. Kumar, A., R. Mishra, Y. Reinwald, and S. Bhat, Cryogels: Freezing unveiled by thawing. Materials Today, 2010. 13(11): p. 42-44.
  • 8. Değirmenci, E., Polivinil Alkol Membranlara İtakonik Asit Aşılanması. 2006.
  • 9. Lozinsky, V.I, and F.M. Plieva, Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 1998. 23(3-4): p. 227-242.
  • 10. Çırak, T., Preparation and characterization of active agent loaded polymeric scaffolds for ophthalmologic applications. 2008.
  • 11. Demir, D., F. Öfkeli, S. Ceylan, and N. Bölgen, Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016. 3(3): p. 131-144.
  • 12. Ji, C., N. Annabi, A. Khademhosseini, and F. Dehghani, Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 2011. 7(4): p. 1653-1664.
  • 13. Budianto, E., S.P. Muthoharoh, and N.M. Nizardo, Effect of crosslinking agents, pH and temperature on swelling behavior of cross-linked chitosan hydrogel. Asian Journal of Applied Sciences, 2015. 3(05): p. 581-588.
  • 14. Beppu, M.M., R.S. Vieira, C.G. Aimoli, and C.C. Santana, Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. Journal of Membrane Science, 2007. 301(1-2): p. 126-130.
  • 15. Li, B., C-L. Shan, Q. Zhou, Y. Fang, Y-L. Wang, F. Xu, L-R. Han, M. Ibrahim, L-B. Guo, and G-L. Xie, Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine Drugs, 2013. 11(5): p. 1534-1552.
  • 16. Ostrowska-Czubenko, J., M. Gierszewska, and M. Pieróg, pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. Journal of Polymer Research, 2015. 22(8): p. 1-12.
  • 17. Yetiskin, B., C. Akinci, and O. Okay, Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures. Polymer, 2017. 128: p. 47-56.
  • 18. Ran, D., Y. Wang, X. Jia, and C. Nie, Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures. Analytica Chimica Acta, 2012. 723: p. 45-53.
  • 19. Nazemi, K., F. Moztarzadeh, N. Jalali, S. Asgari, and M. Mozafari, Synthesis and characterization of poly (lactic-co-glycolic) acid nanoparticles-loaded chitosan/bioactive glass scaffolds as a localized delivery system in the bone defects. BioMed research international, 2014. 2014: p. 1-9.
  • 20. Çetinkaya, Z., D. Demir, and N. Bölgen, Fish skin ısolated collagen cryogels for tissue engineering applications: purification, synthesis and characterization. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016. 3(3): p. 329-348.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Mühendislik, Ortak Disiplinler
Bölüm Research Articles
Yazarlar

Nimet BÖLGEN> (Sorumlu Yazar)
Department of Chemical Engineering, Mersin University, Mersin 33110, Turkey
0000-0003-3162-0803
Türkiye


Seda CEYLAN Bu kişi benim
Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
0000-0002-1088-7886
Türkiye


Didem DEMİR>
Department of Chemical Engineering, Mersin University, Mersin 33110, Turkey
0000-0002-2977-2077
Türkiye

Yayımlanma Tarihi 15 Aralık 2019
Başvuru Tarihi 26 Ekim 2018
Kabul Tarihi 9 Eylül 2019
Yayınlandığı Sayı Yıl 2019, Cilt 3, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { iarej475136, journal = {International Advanced Researches and Engineering Journal}, eissn = {2618-575X}, address = {}, publisher = {Ceyhun YILMAZ}, year = {2019}, volume = {3}, number = {3}, pages = {170 - 174}, doi = {10.35860/iarej.475136}, title = {Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications}, key = {cite}, author = {Bölgen, Nimet and Ceylan, Seda and Demir, Didem} }
APA Bölgen, N. , Ceylan, S. & Demir, D. (2019). Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications . International Advanced Researches and Engineering Journal , 3 (3) , 170-174 . DOI: 10.35860/iarej.475136
MLA Bölgen, N. , Ceylan, S. , Demir, D. "Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications" . International Advanced Researches and Engineering Journal 3 (2019 ): 170-174 <https://dergipark.org.tr/tr/pub/iarej/issue/50386/475136>
Chicago Bölgen, N. , Ceylan, S. , Demir, D. "Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications". International Advanced Researches and Engineering Journal 3 (2019 ): 170-174
RIS TY - JOUR T1 - Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications AU - Nimet Bölgen , Seda Ceylan , Didem Demir Y1 - 2019 PY - 2019 N1 - doi: 10.35860/iarej.475136 DO - 10.35860/iarej.475136 T2 - International Advanced Researches and Engineering Journal JF - Journal JO - JOR SP - 170 EP - 174 VL - 3 IS - 3 SN - -2618-575X M3 - doi: 10.35860/iarej.475136 UR - https://doi.org/10.35860/iarej.475136 Y2 - 2019 ER -
EndNote %0 International Advanced Researches and Engineering Journal Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications %A Nimet Bölgen , Seda Ceylan , Didem Demir %T Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications %D 2019 %J International Advanced Researches and Engineering Journal %P -2618-575X %V 3 %N 3 %R doi: 10.35860/iarej.475136 %U 10.35860/iarej.475136
ISNAD Bölgen, Nimet , Ceylan, Seda , Demir, Didem . "Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications". International Advanced Researches and Engineering Journal 3 / 3 (Aralık 2019): 170-174 . https://doi.org/10.35860/iarej.475136
AMA Bölgen N. , Ceylan S. , Demir D. Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications. IAREJ. 2019; 3(3): 170-174.
Vancouver Bölgen N. , Ceylan S. , Demir D. Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications. International Advanced Researches and Engineering Journal. 2019; 3(3): 170-174.
IEEE N. Bölgen , S. Ceylan ve D. Demir , "Influence of fabrication temperature on the structural features of chitosan gels for tissue engineering applications", International Advanced Researches and Engineering Journal, c. 3, sayı. 3, ss. 170-174, Ara. 2019, doi:10.35860/iarej.475136



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.