Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 4 Sayı: 2, 106 - 115, 15.08.2020
https://doi.org/10.35860/iarej.717634

Öz

Kaynakça

  • 1. Alizadeh Kaklar, J. and H. Saeidi Googarchin, Approximate stress intensity factors for a semi-circular crack in an arbitrary structure under arbitrary mode I loading. Theoretical and Applied Fracture Mechanics, 2018. 94: p. 71-83.
  • 2. Burcham, M.N., et al., Characterization and Failure Analysis of an Automotive Ball Joint. Journal of Failure Analysis and Prevention, 2017. 17(2/2017): p. 13.
  • 3. Uguz, A. and S.H. Oka, Modeling the effects of mechanical loads - Finite element modeling of ball joints under dynamic loading. Materialpruefung/Materials Testing, 2004. 46: p. 506-512.
  • 4. Verim Ö. and M. Yumurtacı, Application of reverse engineering approach on a damaged mechanical part. International Advanced Researches and Engineering Journal, 2020. 4(1): p. 21-28.
  • 5. Do, T.D., et al., Determination of Plastic Zone Sizes at the Crack Tip. Materials Characterization: Modern Methods and Applications, 2016: p. 175-197.
  • 6. Yi, Z.H. and S. Sun, Thickness Effect on Fracture Toughness and Plastic Zone Size. Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (Mimt 2010), 2010: p. 1-5.
  • 7. Armentani, E., et al., Plastic zone size as EPFM parameter. Advances in Fracture and Damage Mechanics, 2003. 251-2: p. 173-178.
  • 8. Gao, X., et al., Analytic solutions to crack tip plastic zone under various loading conditions. European Journal of Mechanics a-Solids, 2010. 29(4): p. 738-745.
  • 9. Adetifa, O.A., Estimating Plastic Zone Sizes for Edge Cracks. International Journal of Fracture, 1984. 24(4): p. R115-R120.
  • 10. MakeltFrom. Hardened (+H) 1.7035 Steel. 2020 February 25.2019 ]; Available from: https://www.makeitfrom.com/material-properties/Hardened-H-1.7035-Steel.
  • 11. Creese, R.C., Introduction to Manufacturing Processes and Materials. 1999: CRC Press, Taylor and Francis Group.
  • 12. Tada, H., P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook. 1973, Hellertown, Pennsylvania: Del. Research Corporation.
  • 13. Kacar, İ., Fracture mechanics: weight function method, in Academic Studies in Engineering Sciences-2019/2, T.Y. Ali Kılıçer, Editor. 2019, Ivpe press: Cetinje-Montenegro, Cetinje, Montenegro. p. 149-173.
  • 14. Kacar, İ., An example application for calculating the stress intensity factor by using the weight function method, in Academic Studies in Engineering Sciences-2019/2, T.Y. Ali Kılıçer, Editor. 2019, Ivpe press: Cetinje-Montenegro, Cetinje, Montenegro. p. 174-188.
  • 15. MathWorks Inc, MATLAB : the language of technical computing : computation, visualization, programming : installation guide for UNIX version 5. 1996: Natwick : Math Works Inc., 1996.
  • 16. Mises, R.V., Mechanics of solid bodies in the plastically-deformable state. Mathematisch-physikalische Klasse, 1913. 1: p. 582-592.
  • 17. Nadai, A., Theory of flow and fracture of solids. 2nd ed. ed. Engineering societies monographs. 1950: New York, NY : McGraw-Hill.
  • 18. Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Mathematical, Physical and Engineering Sciences, 1948. 193(1033): p. 281-297.
  • 19. Kılıç S., Toros S., Kacar İ and Fahrettin Ö., Sonlu Elemanlar Analizlerinde Sac Metal Şekillendirme Parametrelerinin İncelenmesi, in Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar-Mühendislik ve Teknoloji, Ö.T. M. Lüy, E. Çam, N. Barışçı, M. D. Demirbaş & M. Güçyetmez, Editor. 2018, Ekin Basım Yayın Dağıtım: Bursa.
  • 20. Colby, R.B., Equivalent Plastic Strain for the Hill's Yield Criterion under General Three-Dimensional Loading, in Department of Mechanical Engineering at the Massachusetts Institute of Technology. 2013, Massachusetts Institute of Technology: Massachusetts Institute of Technology. p. 45.
  • 21. Sun, C.T. and Z.H. Jin, Chapter 6 - Crack Tip Plasticity, in Fracture Mechanics, C.T. Sun and Z.H. Jin, Editors. 2012, Academic Press: Boston. p. 123-169.
  • 22. Irwin, G.R., Plastic Zone Near a Crack Tip and Fracture Toughness, in Sagamore Ordnance Material Conference. 1960. p. IV63–1V78.
  • 23. Dugdale, D.S., Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960. 8(2): p. 100-104.
  • 24. Uğuz, A., Kırılma Mekaniğine Giriş. 1.Baskı ed. 1996, Bursa: Vipaş Yayınları.
  • 25. Schreurs, P. Fracture Mechanics (4A780). 2020 [cited 2020 January, 2020]; Available from: http://www.mate.tue.nl/~piet/edu/frm/htm/frmnum1112.html.
  • 26. DeSalvo, G.J. and J.A. Swanson, ANSYS engineering analysis system user's manual. 1985, Houston, Pa: Swanson Analysis Systems.
  • 27. Ji, X., F. Zhu, and P.F. He, Determination of stress intensity factor with direct stress approach using finite element analysis. Acta Mechanica Sinica, 2017. 33(5): p. 879-885.
  • 28. Ivey, J., Analytic Solutions for the Crack-Tip Plastic Zone under Mixed Mode Loading Conditions, in Mechanical Engineering. 2017, University of New Mexico: Albuquerque, New Mexico.
  • 29. Khan, S.M.A. and M.K. Khraisheh, The anisotropic R-criterion for crack initiation. Engineering Fracture Mechanics, 2008. 75(14): p. 4257-4278.
  • 30. Cao, J., et al., Study of anisotropic crack growth behavior for aluminum alloy 7050-T7451. Engineering Fracture Mechanics, 2018. 196: p. 98-112.
  • 31. Khan, S.M.A. and M.K. Khraisheh, A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. International Journal of Plasticity, 2004. 20(1): p. 55-84.

Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing

Yıl 2020, Cilt: 4 Sayı: 2, 106 - 115, 15.08.2020
https://doi.org/10.35860/iarej.717634

Öz

In automotive industry, molecular bushings transfer loads from steering gearbox to wheels on a vehicle. The pipe is one of the most vital member of these routing systems and manufactured using 41Cr4 sheet metal. For a pipe of molecular bushing, analytical solutions of crack tip plastic zone size is derived by using four yield criteria: Von Mises, Tresca, Hill48, and Hu2003. Hill48 and Hu2003 are useful criteria for materials with higher anisotropy such as sheet metals. Material’s hardening behaviour is modelled using bilinear isotropic hardening rule by coupling with associated flow rule under isotropic and large scale plasticity condition. The solutions are developed for mode-I loading case due to service conditions of the pipe. A finite element simulation is performed to collect stress intensity factors. Results are verified by comparing to those of Irwin and Dugdale. The plastic zone’s shape and size are analysed for different anisotropy cases. The results show that plastic zone have “kidney” or “butterfly” shapes depending on the yield criteria used. Increasing anisotropy has significant effect on plastic zone.

Kaynakça

  • 1. Alizadeh Kaklar, J. and H. Saeidi Googarchin, Approximate stress intensity factors for a semi-circular crack in an arbitrary structure under arbitrary mode I loading. Theoretical and Applied Fracture Mechanics, 2018. 94: p. 71-83.
  • 2. Burcham, M.N., et al., Characterization and Failure Analysis of an Automotive Ball Joint. Journal of Failure Analysis and Prevention, 2017. 17(2/2017): p. 13.
  • 3. Uguz, A. and S.H. Oka, Modeling the effects of mechanical loads - Finite element modeling of ball joints under dynamic loading. Materialpruefung/Materials Testing, 2004. 46: p. 506-512.
  • 4. Verim Ö. and M. Yumurtacı, Application of reverse engineering approach on a damaged mechanical part. International Advanced Researches and Engineering Journal, 2020. 4(1): p. 21-28.
  • 5. Do, T.D., et al., Determination of Plastic Zone Sizes at the Crack Tip. Materials Characterization: Modern Methods and Applications, 2016: p. 175-197.
  • 6. Yi, Z.H. and S. Sun, Thickness Effect on Fracture Toughness and Plastic Zone Size. Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (Mimt 2010), 2010: p. 1-5.
  • 7. Armentani, E., et al., Plastic zone size as EPFM parameter. Advances in Fracture and Damage Mechanics, 2003. 251-2: p. 173-178.
  • 8. Gao, X., et al., Analytic solutions to crack tip plastic zone under various loading conditions. European Journal of Mechanics a-Solids, 2010. 29(4): p. 738-745.
  • 9. Adetifa, O.A., Estimating Plastic Zone Sizes for Edge Cracks. International Journal of Fracture, 1984. 24(4): p. R115-R120.
  • 10. MakeltFrom. Hardened (+H) 1.7035 Steel. 2020 February 25.2019 ]; Available from: https://www.makeitfrom.com/material-properties/Hardened-H-1.7035-Steel.
  • 11. Creese, R.C., Introduction to Manufacturing Processes and Materials. 1999: CRC Press, Taylor and Francis Group.
  • 12. Tada, H., P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook. 1973, Hellertown, Pennsylvania: Del. Research Corporation.
  • 13. Kacar, İ., Fracture mechanics: weight function method, in Academic Studies in Engineering Sciences-2019/2, T.Y. Ali Kılıçer, Editor. 2019, Ivpe press: Cetinje-Montenegro, Cetinje, Montenegro. p. 149-173.
  • 14. Kacar, İ., An example application for calculating the stress intensity factor by using the weight function method, in Academic Studies in Engineering Sciences-2019/2, T.Y. Ali Kılıçer, Editor. 2019, Ivpe press: Cetinje-Montenegro, Cetinje, Montenegro. p. 174-188.
  • 15. MathWorks Inc, MATLAB : the language of technical computing : computation, visualization, programming : installation guide for UNIX version 5. 1996: Natwick : Math Works Inc., 1996.
  • 16. Mises, R.V., Mechanics of solid bodies in the plastically-deformable state. Mathematisch-physikalische Klasse, 1913. 1: p. 582-592.
  • 17. Nadai, A., Theory of flow and fracture of solids. 2nd ed. ed. Engineering societies monographs. 1950: New York, NY : McGraw-Hill.
  • 18. Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Mathematical, Physical and Engineering Sciences, 1948. 193(1033): p. 281-297.
  • 19. Kılıç S., Toros S., Kacar İ and Fahrettin Ö., Sonlu Elemanlar Analizlerinde Sac Metal Şekillendirme Parametrelerinin İncelenmesi, in Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar-Mühendislik ve Teknoloji, Ö.T. M. Lüy, E. Çam, N. Barışçı, M. D. Demirbaş & M. Güçyetmez, Editor. 2018, Ekin Basım Yayın Dağıtım: Bursa.
  • 20. Colby, R.B., Equivalent Plastic Strain for the Hill's Yield Criterion under General Three-Dimensional Loading, in Department of Mechanical Engineering at the Massachusetts Institute of Technology. 2013, Massachusetts Institute of Technology: Massachusetts Institute of Technology. p. 45.
  • 21. Sun, C.T. and Z.H. Jin, Chapter 6 - Crack Tip Plasticity, in Fracture Mechanics, C.T. Sun and Z.H. Jin, Editors. 2012, Academic Press: Boston. p. 123-169.
  • 22. Irwin, G.R., Plastic Zone Near a Crack Tip and Fracture Toughness, in Sagamore Ordnance Material Conference. 1960. p. IV63–1V78.
  • 23. Dugdale, D.S., Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960. 8(2): p. 100-104.
  • 24. Uğuz, A., Kırılma Mekaniğine Giriş. 1.Baskı ed. 1996, Bursa: Vipaş Yayınları.
  • 25. Schreurs, P. Fracture Mechanics (4A780). 2020 [cited 2020 January, 2020]; Available from: http://www.mate.tue.nl/~piet/edu/frm/htm/frmnum1112.html.
  • 26. DeSalvo, G.J. and J.A. Swanson, ANSYS engineering analysis system user's manual. 1985, Houston, Pa: Swanson Analysis Systems.
  • 27. Ji, X., F. Zhu, and P.F. He, Determination of stress intensity factor with direct stress approach using finite element analysis. Acta Mechanica Sinica, 2017. 33(5): p. 879-885.
  • 28. Ivey, J., Analytic Solutions for the Crack-Tip Plastic Zone under Mixed Mode Loading Conditions, in Mechanical Engineering. 2017, University of New Mexico: Albuquerque, New Mexico.
  • 29. Khan, S.M.A. and M.K. Khraisheh, The anisotropic R-criterion for crack initiation. Engineering Fracture Mechanics, 2008. 75(14): p. 4257-4278.
  • 30. Cao, J., et al., Study of anisotropic crack growth behavior for aluminum alloy 7050-T7451. Engineering Fracture Mechanics, 2018. 196: p. 98-112.
  • 31. Khan, S.M.A. and M.K. Khraisheh, A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. International Journal of Plasticity, 2004. 20(1): p. 55-84.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Research Articles
Yazarlar

İlyas Kacar 0000-0002-5887-8807

Yayımlanma Tarihi 15 Ağustos 2020
Gönderilme Tarihi 10 Nisan 2020
Kabul Tarihi 5 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 2

Kaynak Göster

APA Kacar, İ. (2020). Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing. International Advanced Researches and Engineering Journal, 4(2), 106-115. https://doi.org/10.35860/iarej.717634
AMA Kacar İ. Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing. Int. Adv. Res. Eng. J. Ağustos 2020;4(2):106-115. doi:10.35860/iarej.717634
Chicago Kacar, İlyas. “Investigation of Plastic Zone Dimension in Front of an External Semi-Elliptic Crack on Pipe of Molecular Bushing”. International Advanced Researches and Engineering Journal 4, sy. 2 (Ağustos 2020): 106-15. https://doi.org/10.35860/iarej.717634.
EndNote Kacar İ (01 Ağustos 2020) Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing. International Advanced Researches and Engineering Journal 4 2 106–115.
IEEE İ. Kacar, “Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing”, Int. Adv. Res. Eng. J., c. 4, sy. 2, ss. 106–115, 2020, doi: 10.35860/iarej.717634.
ISNAD Kacar, İlyas. “Investigation of Plastic Zone Dimension in Front of an External Semi-Elliptic Crack on Pipe of Molecular Bushing”. International Advanced Researches and Engineering Journal 4/2 (Ağustos 2020), 106-115. https://doi.org/10.35860/iarej.717634.
JAMA Kacar İ. Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing. Int. Adv. Res. Eng. J. 2020;4:106–115.
MLA Kacar, İlyas. “Investigation of Plastic Zone Dimension in Front of an External Semi-Elliptic Crack on Pipe of Molecular Bushing”. International Advanced Researches and Engineering Journal, c. 4, sy. 2, 2020, ss. 106-15, doi:10.35860/iarej.717634.
Vancouver Kacar İ. Investigation of plastic zone dimension in front of an external semi-elliptic crack on pipe of molecular bushing. Int. Adv. Res. Eng. J. 2020;4(2):106-15.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.