Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 4 Sayı: 3, 161 - 172, 15.12.2020
https://doi.org/10.35860/iarej.722229

Öz

Kaynakça

  • 1. Kueny, R.A., Kolb, J., Lehmann, W., Püschel, K., Morlock, M.M. and Huber, G., Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J, 2014. 23(10): p. 2196–2202.
  • 2. Chao. K,H,, Lai, Y.S., Chen, W.C., Chang, C.M., McClean, C.J., Fan, C.Y. et al. Biomechanical analysis of different types of pedicle screw augmentation: A cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys, 2013. 35(10): p. 1506-1512.
  • 3. Hashemi, A., Bednar, D. and Ziada, S., Pullout strength of pedicle screws augmented with particulate calcium phosphate: An experimental study. Spine J, 2009. 9(5): p. 404-410.
  • 4. Melkerson M, Kirkpatrick J, and Griffith S., Spinal implants: Are we evaluating them appropriately? (STP1431 ed). 2003, Dallas: ASTM International.
  • 5. ASTM International. F543-17 Standard Specification and Test Methods for Metallic Medical Bone Screws. West Conshohocken, PA; ASTM International, 2017.
  • 6. Choma, T., Pfeiffer, F., Swope, R. and Hirner, J.P., Pedicle screw design and cement augmentation in osteoporotic vertebrae. Spine, 2012. 37(26): p. 1628-1632.
  • 7. Tolunay, T., Başgül, C., Demir, T., Yaman, M.E. and Arslan, K.A., Pullout performance comparison of pedicle screws based on cement application and design parameters. Proc Inst Mech Eng H, 2015. 229(11): p. 786-793.
  • 8. Yaman, O., Demir, T., Arslan, A.K., Iyidiker, M.A., Tolunay, T., Camuscu, N., et al. The comparison of pullout strengths of various pedicle screw designs on synthetic foams and ovine vertebrae. Turk Neurosurg, 2015. 25(4): p. 532-538.
  • 9. Tolunay, T., Arslan, A.K., Yaman, O., Dalbayrak, S. and Demir, T., Biomechanical performance of various cement-augmented cannulated pedicle screw designs for osteoporotic bones. Spine Deform, 2015. 3(3): p. 205-210.
  • 10. Varghese, V., Kumar, G.S. and Krishnan, V., Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys, 2017. 40: p. 28-38.
  • 11. Demir, T. and Başgül, C., The pullout performance of pedicle screws. 2015, London: Springer International Publishing.
  • 12. Kim, Y.Y., Choi, W.S. and Rhyu, K.W., Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study. Spine J, 2012. 12(2): p. 164-168.
  • 13. Mehta, H., Santos, E., Ledonio, C., Sembrano, J., Ellingson, A., Pare, P., et al. Biomechanical analysis of pedicle screw thread differential design in an osteoporotic cadaver model. Clin Biomech, 2012. 27(3): p. 234-240.
  • 14. Demir T., A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell. Proc Inst Mech Eng H, 2015. 229(5): p. 386-394.
  • 15. Aycan, M.F., Yaman, M.E., Usta, Y., Demir, T. and Tolunay, T., Investigation of toggling effect on pullout performance of pedicle screws. Proc Inst Mech Eng H, 2018. 232(4): p. 395-402.
  • 16. Paik, H., Dmitriev, A., Lehman, R., Gaume, R.E., Ambati, D.V., Kang, D.G., et al. The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine. Spine J, 2012. 12(5): p. 417-424.
  • 17. Brasiliense, L., Lazaro, B., Reyes, P., Newcomb, A.G., Turner, J.L., Crandall, D.G., et al. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine J, 2013. 13(8): p. 947-956.
  • 18. Benson, D., Lansford, T., Cotton, J., Burton, D., Jackson, R.S. and McIff, T., Biomechanical analysis of cement augmentation techniques on pedicle screw fixation in osteopenic bone: a cadaveric study. Spine Deform, 2014. 2(1): p. 28-33.
  • 19. Patel, P., Hukins, D. and Shepherd, D., The effect of “toggling” on the pullout strength of bone screws in normal and osteoporotic bone models. Open Mech Eng J, 2013. 7: p. 35-39.
  • 20. Mehmanparast, H., Petit, Y. and Mac-Thiong, J.M., Comparison of pedicle screw loosening mechanisms and the effect on fixation strength. J Biomech Eng, 2015. 137(12): p. 121003-1/7.
  • 21. Elder, B., Lo, S.F., Holme,s C., Goodwin, C.R., Kosztowski, T.A., Lina, I.A., et al. The biomechanics of pedicle screw augmentation with cement. Spine J, 2015. 15(6): p. 1432-1445.
  • 22. Mehmanparast, H., Mac-Thiong, J. and Petit, Y., Biomechanical evaluation of pedicle screw loosening mechanism using synthetic bone surrogate of various densities. Conf Proc IEEE Eng Med Biol Soc, 2014. 2014: p. 4346-4349.
  • 23. Lill, C., Schlege,l U., Wahl, D. and Schneider, E., Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180°. J Spinal Disord, 2000. 13(3): p. 259-266.
  • 24. Sterba, W., Kim, D.G., Fyhrie, D., Yeni, Y.N. and Vaidya, R., Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech, 2007. 22(4): p. 385-391.
  • 25. Zhu, Q., Kingwell, S., Li, Z., Pan, H., Lu, W.W. and Oxland, T.R., Enhancing pedicle screw fixation in the aging spine with a novel bioactive bone cement. Spine, 2012. 37(17): p. 1030-1037.
  • 26. Savage, J., Limthongkul, W., Park, H.S., Zhang, L.Q. and Karaikovic, E.E., A comparison of biomechanical stability and pullout strength of two C1–C2 fixation constructs. Spine J, 2011. 11(7): p. 654–658.
  • 27. Mehmanparast, H., Mac-Thiong, J. and Petit, Y., In vitro evaluation of pedicle screw loosening mechanism: a preliminary study on animal model. Scoliosis, 2015. 10(Suppl 1): O25.
  • 28. Bianco, R.J., Aubin, C.E., Mac-Thiong, J.M., Wagnac, E. and Arnoux, P.J., Pedicle screw fixation under nonaxial loads: a cadaveric study. Spine, 2016. 41(3): p. 124-130.
  • 29. Liebsch, C., Zimmermann, J., Graf, N., Schilling, C., Wilke, H.J. and Kienle, A., In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. J Mech Behav Biomed Mater, 2018. 77: p. 578-585.
  • 30. Baluch, D., Patel, A., Lullo, B., Havey, R.M., Voronov, L.I., Nguyen, N.L., et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine, 2014. 39(22): p. 1297-1302.
  • 31. Lotz, J., Hu, S., Chiu, D., Yu, M., Colliou, O. and Poser, R.D., Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine, 1997. 22(23): p. 2716-2723.
  • 32. Pishnamaz, M., Lange, H., Herren, C., Na, H.S., Lichte, P., Hildebrand, F., et al. The quantity of bone cement influences the anchorage of augmented pedicle screws in the osteoporotic spine: A biomechanical human cadaveric study. Clin Biomech, 2018. 52: p. 14-19.
  • 33. Gates, T.A., Moldavsky, M., Salloum, K., Dunbar, G.L., Park, J. and Bucklen, B., Biomechanical analysis of a novel pedicle screw anchor designed for the osteoporotic population. World Neurosurg, 2015. 83(6): p. 965-969.
  • 34. Schmoelz, W., Keiler, A., Konschake, M., Lindtner, R.A. and Gasbarrini, A., Effect of pedicle screw augmentation with a self-curing elastomeric material under cranio-caudal cyclic loading - A cadaveric biomechanical study. J Orthop Surg Res, 2018. 13(1): p. 251-258.
  • 35. Lindtner, R., Schmid, R., Nydegger, T., Konschake, M. and Schmoelz, W., Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur Spine J, 2018. 27(8): p. 1775-1784.
  • 36. Rodriguez-Olaverri, J., Hasharoni, A., DeWal, H., Nuzzo, R.M., Kummer, F.J. and Errico, T.J., The effect of end screw orientation on the stability of anterior instrumentation in cyclic lateral bending. Spine J, 2005. 5(5): p. 554-557.
  • 37. Inceoglu, S., Ehlert, M., Akbay, A. and McLain, R.F., Axial cyclic behavior of the bone–screw interface. Med Eng Phys, 2006. 28(9): p. 888-893.
  • 38. Aycan, M.F., Tolunay, T., Demir, T., Yaman, M.E. and Usta, Y., Pullout performance comparison of novel expandable pedicle screw with expandable poly-ether-ether-ketone shells and cement-augmented pedicle screws. Proc Inst Mech Eng H, 2017. 231(2): p. 169-175.
  • 39. Demir, T., Possible usage of cannulated pedicle screws without cement augmentation. Applied Bionics and Biomechanics, 2014. 11(3): p. 149-155.
  • 40. Chen, L., Tai, C., Lee, D., Lai, P.L., Lee, Y.C., Niu, C.C., et al. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord, 2011. 12: p. 12-33.
  • 41. Kiner, D., Wybo, C., Sterba, W., Yeni, Y.N., Bartol, S.W. and Vaidya, R., Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine, 2008. 33(24): p. 2618-2622.
  • 42. Wittenberg, R., Lee, K., Shea, M., White, A.A. and Hayes, W.C., Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res, 1993. (296): p. 278-287.
  • 43. Lai, D.M., Shih, Y.T., Chen, Y.H., Chien, A. and Wang, J.L., Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. Journal of Biomechanics, 2018. 70: p.196–203.
  • 44. Hirano, T., Hasegawa, K., Takahashi, H., Uchiyama, S., Hara, T., Washio, T., et al. Structural characteristics of the pedicle and its role in screw stability. Spine, 1997. 22(21): p. 2504-2509.
  • 45. Wang, W.T., Guo, C.H., Duan, K., Ma, M.J., Jiang, Y., Liu, T.J., et al. Dual pitch titanium-coated pedicle screws improve initial and early fixation in a polyetheretherketone rod semi-rigid fixation system in sheep. Chinese Medical Journal, 2019. 132(21): p. 2594-2600.
  • 46. Akpolat, Y., İnceoğlu, S., Kinne, N., Hunt, D. and Cheng, W.K., Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine, 2016. 41(6): p. 335-341.
  • 47. Wray, S., Mimran, R., Vadapalli, S., Shetye, S.S., McGilvray, K.C. and Puttlitz, C.M., Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine, 2015. 22(5): p. 503-510.
  • 48. Lim, T., An, H., Hasegawa, T., McGrady, L., Hasanoglu, K.Y. and Wilson, C.R., Prediction of fatigue screw loosening in anterior spinal fixation using dual energy X-ray absorptiometry. Spine, 1995. 20(23): p. 2565-2568.
  • 49. Yamagata, M., Kitahara, H., Minami, S., Takahashi, K., Isobe, K., Moriya, H., et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine, 1992;. 17(3 Suppl): p. 51-54.
  • 50. Burval, D., McLain, R., Milks, R. and Inceoglu, S., Primary pedicle screw augmentation in osteoporotic lumbar vertabrae. Spine, 2007. 32(10): p. 1077–1083.
  • 51. Zdeblick, T., Kunz, D., Cooke, M. and McCabe, R., Pedicle screw pullout strength. Correlation with insertional torque. Spine, 1993. 18(12): p. 1673-1676.
  • 52. Sven, H., Yannick, L., Daniel, B., Heini, P. and Benneker, L., Influence of screw augmentation in posterior dynamic and rigid stabilization systems in osteoporotic lumbar vertebrae: A biomechanical cadaveric study. Spine, 2014. 39(6): p. 384-389.
  • 53. Huiskes, R. and Nunamaker, D., Local stresses and bone adaption around orthopedic implants. Calcif Tissue Int, 1984. 36(Suppl 1): p. 110-117.
  • 54. Funk, M. and Litsky, A., Effect of cement modulus on the shear properties of the bone-cement interface. Biomaterials, 1998. 19(17): p. 1561-1567.
  • 55. Bostelmann, R., Keiler, A., Steiger, H., Scholz, A., Cornelius, J.F. and Schmoelz, W., Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading. Eur Spine J, 2017. 26(1): p. 181-188.
  • 56. Windolf, M., Biomechanics of implant augmentation. Unfallchirurg, 2015. 118(9): p. 765–771.
  • 57. McLachlin, S., Al Saleh, K., Gurr, K., Bailey, S.I., Bailey, C.S. and Dunning, C.E., Comparative assessment of sacral screw loosening augmented with pmma versus a calcium triglyceride bone cement. Spine, 2011. 36(11): p. 699-704.

Toggling effect on pullout performance of pedicle screws: Review

Yıl 2020, Cilt: 4 Sayı: 3, 161 - 172, 15.12.2020
https://doi.org/10.35860/iarej.722229

Öz

Screw loosening in spine surgery is a clinical complication in patients with poor bone quality. Pedicle screws are subjected to bending moments and axial loads that may cause toggling during daily movements of spine. The purpose of this study was to assess the previous studies related to toggling effect on pullout performance of pedicle screws by surveying the whole literature and to provide some discussion for new studies about pullout performance of pedicle screws after toggling. The search was performed by combining terms of pedicle screw, toggling, screw loosening, fatigue, cyclic loading, and pullout. The retrieved articles dealing with determined terms and also their references were reviewed. Some of these articles were eliminated after review process. Toggling was determined to be crucial for the stabilization performance of pedicle screw because the loosening mechanism of screws was affected directly by cyclic loading. The toggling or cyclic loading affected the holding capacity of pedicle screws negatively, and the possibility of loosening or failure problem for pedicle screws increased with cyclic loading magnitude. Loading conditions, screw properties, test medium, level of spinal region, and cement usage were determined by many researchers as the most important parameters affecting the toggling performance as well as the pullout strength of pedicle screws. The pullout strength of pedicle screws generally decreased with cyclic loading. The parameters of cyclic loading were fairly important for pullout performance of pedicle screws. Screw properties and cement augmentation had critical effects on the stability of screws under cyclic loading, as well.

Kaynakça

  • 1. Kueny, R.A., Kolb, J., Lehmann, W., Püschel, K., Morlock, M.M. and Huber, G., Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J, 2014. 23(10): p. 2196–2202.
  • 2. Chao. K,H,, Lai, Y.S., Chen, W.C., Chang, C.M., McClean, C.J., Fan, C.Y. et al. Biomechanical analysis of different types of pedicle screw augmentation: A cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys, 2013. 35(10): p. 1506-1512.
  • 3. Hashemi, A., Bednar, D. and Ziada, S., Pullout strength of pedicle screws augmented with particulate calcium phosphate: An experimental study. Spine J, 2009. 9(5): p. 404-410.
  • 4. Melkerson M, Kirkpatrick J, and Griffith S., Spinal implants: Are we evaluating them appropriately? (STP1431 ed). 2003, Dallas: ASTM International.
  • 5. ASTM International. F543-17 Standard Specification and Test Methods for Metallic Medical Bone Screws. West Conshohocken, PA; ASTM International, 2017.
  • 6. Choma, T., Pfeiffer, F., Swope, R. and Hirner, J.P., Pedicle screw design and cement augmentation in osteoporotic vertebrae. Spine, 2012. 37(26): p. 1628-1632.
  • 7. Tolunay, T., Başgül, C., Demir, T., Yaman, M.E. and Arslan, K.A., Pullout performance comparison of pedicle screws based on cement application and design parameters. Proc Inst Mech Eng H, 2015. 229(11): p. 786-793.
  • 8. Yaman, O., Demir, T., Arslan, A.K., Iyidiker, M.A., Tolunay, T., Camuscu, N., et al. The comparison of pullout strengths of various pedicle screw designs on synthetic foams and ovine vertebrae. Turk Neurosurg, 2015. 25(4): p. 532-538.
  • 9. Tolunay, T., Arslan, A.K., Yaman, O., Dalbayrak, S. and Demir, T., Biomechanical performance of various cement-augmented cannulated pedicle screw designs for osteoporotic bones. Spine Deform, 2015. 3(3): p. 205-210.
  • 10. Varghese, V., Kumar, G.S. and Krishnan, V., Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys, 2017. 40: p. 28-38.
  • 11. Demir, T. and Başgül, C., The pullout performance of pedicle screws. 2015, London: Springer International Publishing.
  • 12. Kim, Y.Y., Choi, W.S. and Rhyu, K.W., Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study. Spine J, 2012. 12(2): p. 164-168.
  • 13. Mehta, H., Santos, E., Ledonio, C., Sembrano, J., Ellingson, A., Pare, P., et al. Biomechanical analysis of pedicle screw thread differential design in an osteoporotic cadaver model. Clin Biomech, 2012. 27(3): p. 234-240.
  • 14. Demir T., A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell. Proc Inst Mech Eng H, 2015. 229(5): p. 386-394.
  • 15. Aycan, M.F., Yaman, M.E., Usta, Y., Demir, T. and Tolunay, T., Investigation of toggling effect on pullout performance of pedicle screws. Proc Inst Mech Eng H, 2018. 232(4): p. 395-402.
  • 16. Paik, H., Dmitriev, A., Lehman, R., Gaume, R.E., Ambati, D.V., Kang, D.G., et al. The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine. Spine J, 2012. 12(5): p. 417-424.
  • 17. Brasiliense, L., Lazaro, B., Reyes, P., Newcomb, A.G., Turner, J.L., Crandall, D.G., et al. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine J, 2013. 13(8): p. 947-956.
  • 18. Benson, D., Lansford, T., Cotton, J., Burton, D., Jackson, R.S. and McIff, T., Biomechanical analysis of cement augmentation techniques on pedicle screw fixation in osteopenic bone: a cadaveric study. Spine Deform, 2014. 2(1): p. 28-33.
  • 19. Patel, P., Hukins, D. and Shepherd, D., The effect of “toggling” on the pullout strength of bone screws in normal and osteoporotic bone models. Open Mech Eng J, 2013. 7: p. 35-39.
  • 20. Mehmanparast, H., Petit, Y. and Mac-Thiong, J.M., Comparison of pedicle screw loosening mechanisms and the effect on fixation strength. J Biomech Eng, 2015. 137(12): p. 121003-1/7.
  • 21. Elder, B., Lo, S.F., Holme,s C., Goodwin, C.R., Kosztowski, T.A., Lina, I.A., et al. The biomechanics of pedicle screw augmentation with cement. Spine J, 2015. 15(6): p. 1432-1445.
  • 22. Mehmanparast, H., Mac-Thiong, J. and Petit, Y., Biomechanical evaluation of pedicle screw loosening mechanism using synthetic bone surrogate of various densities. Conf Proc IEEE Eng Med Biol Soc, 2014. 2014: p. 4346-4349.
  • 23. Lill, C., Schlege,l U., Wahl, D. and Schneider, E., Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180°. J Spinal Disord, 2000. 13(3): p. 259-266.
  • 24. Sterba, W., Kim, D.G., Fyhrie, D., Yeni, Y.N. and Vaidya, R., Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech, 2007. 22(4): p. 385-391.
  • 25. Zhu, Q., Kingwell, S., Li, Z., Pan, H., Lu, W.W. and Oxland, T.R., Enhancing pedicle screw fixation in the aging spine with a novel bioactive bone cement. Spine, 2012. 37(17): p. 1030-1037.
  • 26. Savage, J., Limthongkul, W., Park, H.S., Zhang, L.Q. and Karaikovic, E.E., A comparison of biomechanical stability and pullout strength of two C1–C2 fixation constructs. Spine J, 2011. 11(7): p. 654–658.
  • 27. Mehmanparast, H., Mac-Thiong, J. and Petit, Y., In vitro evaluation of pedicle screw loosening mechanism: a preliminary study on animal model. Scoliosis, 2015. 10(Suppl 1): O25.
  • 28. Bianco, R.J., Aubin, C.E., Mac-Thiong, J.M., Wagnac, E. and Arnoux, P.J., Pedicle screw fixation under nonaxial loads: a cadaveric study. Spine, 2016. 41(3): p. 124-130.
  • 29. Liebsch, C., Zimmermann, J., Graf, N., Schilling, C., Wilke, H.J. and Kienle, A., In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. J Mech Behav Biomed Mater, 2018. 77: p. 578-585.
  • 30. Baluch, D., Patel, A., Lullo, B., Havey, R.M., Voronov, L.I., Nguyen, N.L., et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine, 2014. 39(22): p. 1297-1302.
  • 31. Lotz, J., Hu, S., Chiu, D., Yu, M., Colliou, O. and Poser, R.D., Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine, 1997. 22(23): p. 2716-2723.
  • 32. Pishnamaz, M., Lange, H., Herren, C., Na, H.S., Lichte, P., Hildebrand, F., et al. The quantity of bone cement influences the anchorage of augmented pedicle screws in the osteoporotic spine: A biomechanical human cadaveric study. Clin Biomech, 2018. 52: p. 14-19.
  • 33. Gates, T.A., Moldavsky, M., Salloum, K., Dunbar, G.L., Park, J. and Bucklen, B., Biomechanical analysis of a novel pedicle screw anchor designed for the osteoporotic population. World Neurosurg, 2015. 83(6): p. 965-969.
  • 34. Schmoelz, W., Keiler, A., Konschake, M., Lindtner, R.A. and Gasbarrini, A., Effect of pedicle screw augmentation with a self-curing elastomeric material under cranio-caudal cyclic loading - A cadaveric biomechanical study. J Orthop Surg Res, 2018. 13(1): p. 251-258.
  • 35. Lindtner, R., Schmid, R., Nydegger, T., Konschake, M. and Schmoelz, W., Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur Spine J, 2018. 27(8): p. 1775-1784.
  • 36. Rodriguez-Olaverri, J., Hasharoni, A., DeWal, H., Nuzzo, R.M., Kummer, F.J. and Errico, T.J., The effect of end screw orientation on the stability of anterior instrumentation in cyclic lateral bending. Spine J, 2005. 5(5): p. 554-557.
  • 37. Inceoglu, S., Ehlert, M., Akbay, A. and McLain, R.F., Axial cyclic behavior of the bone–screw interface. Med Eng Phys, 2006. 28(9): p. 888-893.
  • 38. Aycan, M.F., Tolunay, T., Demir, T., Yaman, M.E. and Usta, Y., Pullout performance comparison of novel expandable pedicle screw with expandable poly-ether-ether-ketone shells and cement-augmented pedicle screws. Proc Inst Mech Eng H, 2017. 231(2): p. 169-175.
  • 39. Demir, T., Possible usage of cannulated pedicle screws without cement augmentation. Applied Bionics and Biomechanics, 2014. 11(3): p. 149-155.
  • 40. Chen, L., Tai, C., Lee, D., Lai, P.L., Lee, Y.C., Niu, C.C., et al. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord, 2011. 12: p. 12-33.
  • 41. Kiner, D., Wybo, C., Sterba, W., Yeni, Y.N., Bartol, S.W. and Vaidya, R., Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine, 2008. 33(24): p. 2618-2622.
  • 42. Wittenberg, R., Lee, K., Shea, M., White, A.A. and Hayes, W.C., Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res, 1993. (296): p. 278-287.
  • 43. Lai, D.M., Shih, Y.T., Chen, Y.H., Chien, A. and Wang, J.L., Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. Journal of Biomechanics, 2018. 70: p.196–203.
  • 44. Hirano, T., Hasegawa, K., Takahashi, H., Uchiyama, S., Hara, T., Washio, T., et al. Structural characteristics of the pedicle and its role in screw stability. Spine, 1997. 22(21): p. 2504-2509.
  • 45. Wang, W.T., Guo, C.H., Duan, K., Ma, M.J., Jiang, Y., Liu, T.J., et al. Dual pitch titanium-coated pedicle screws improve initial and early fixation in a polyetheretherketone rod semi-rigid fixation system in sheep. Chinese Medical Journal, 2019. 132(21): p. 2594-2600.
  • 46. Akpolat, Y., İnceoğlu, S., Kinne, N., Hunt, D. and Cheng, W.K., Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine, 2016. 41(6): p. 335-341.
  • 47. Wray, S., Mimran, R., Vadapalli, S., Shetye, S.S., McGilvray, K.C. and Puttlitz, C.M., Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine, 2015. 22(5): p. 503-510.
  • 48. Lim, T., An, H., Hasegawa, T., McGrady, L., Hasanoglu, K.Y. and Wilson, C.R., Prediction of fatigue screw loosening in anterior spinal fixation using dual energy X-ray absorptiometry. Spine, 1995. 20(23): p. 2565-2568.
  • 49. Yamagata, M., Kitahara, H., Minami, S., Takahashi, K., Isobe, K., Moriya, H., et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine, 1992;. 17(3 Suppl): p. 51-54.
  • 50. Burval, D., McLain, R., Milks, R. and Inceoglu, S., Primary pedicle screw augmentation in osteoporotic lumbar vertabrae. Spine, 2007. 32(10): p. 1077–1083.
  • 51. Zdeblick, T., Kunz, D., Cooke, M. and McCabe, R., Pedicle screw pullout strength. Correlation with insertional torque. Spine, 1993. 18(12): p. 1673-1676.
  • 52. Sven, H., Yannick, L., Daniel, B., Heini, P. and Benneker, L., Influence of screw augmentation in posterior dynamic and rigid stabilization systems in osteoporotic lumbar vertebrae: A biomechanical cadaveric study. Spine, 2014. 39(6): p. 384-389.
  • 53. Huiskes, R. and Nunamaker, D., Local stresses and bone adaption around orthopedic implants. Calcif Tissue Int, 1984. 36(Suppl 1): p. 110-117.
  • 54. Funk, M. and Litsky, A., Effect of cement modulus on the shear properties of the bone-cement interface. Biomaterials, 1998. 19(17): p. 1561-1567.
  • 55. Bostelmann, R., Keiler, A., Steiger, H., Scholz, A., Cornelius, J.F. and Schmoelz, W., Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading. Eur Spine J, 2017. 26(1): p. 181-188.
  • 56. Windolf, M., Biomechanics of implant augmentation. Unfallchirurg, 2015. 118(9): p. 765–771.
  • 57. McLachlin, S., Al Saleh, K., Gurr, K., Bailey, S.I., Bailey, C.S. and Dunning, C.E., Comparative assessment of sacral screw loosening augmented with pmma versus a calcium triglyceride bone cement. Spine, 2011. 36(11): p. 699-704.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Review Articles
Yazarlar

Mehmet Fatih Aycan 0000-0001-9434-5955

Teyfik Demir 0000-0001-6352-8302

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 17 Nisan 2020
Kabul Tarihi 8 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 3

Kaynak Göster

APA Aycan, M. F., & Demir, T. (2020). Toggling effect on pullout performance of pedicle screws: Review. International Advanced Researches and Engineering Journal, 4(3), 161-172. https://doi.org/10.35860/iarej.722229
AMA Aycan MF, Demir T. Toggling effect on pullout performance of pedicle screws: Review. Int. Adv. Res. Eng. J. Aralık 2020;4(3):161-172. doi:10.35860/iarej.722229
Chicago Aycan, Mehmet Fatih, ve Teyfik Demir. “Toggling Effect on Pullout Performance of Pedicle Screws: Review”. International Advanced Researches and Engineering Journal 4, sy. 3 (Aralık 2020): 161-72. https://doi.org/10.35860/iarej.722229.
EndNote Aycan MF, Demir T (01 Aralık 2020) Toggling effect on pullout performance of pedicle screws: Review. International Advanced Researches and Engineering Journal 4 3 161–172.
IEEE M. F. Aycan ve T. Demir, “Toggling effect on pullout performance of pedicle screws: Review”, Int. Adv. Res. Eng. J., c. 4, sy. 3, ss. 161–172, 2020, doi: 10.35860/iarej.722229.
ISNAD Aycan, Mehmet Fatih - Demir, Teyfik. “Toggling Effect on Pullout Performance of Pedicle Screws: Review”. International Advanced Researches and Engineering Journal 4/3 (Aralık 2020), 161-172. https://doi.org/10.35860/iarej.722229.
JAMA Aycan MF, Demir T. Toggling effect on pullout performance of pedicle screws: Review. Int. Adv. Res. Eng. J. 2020;4:161–172.
MLA Aycan, Mehmet Fatih ve Teyfik Demir. “Toggling Effect on Pullout Performance of Pedicle Screws: Review”. International Advanced Researches and Engineering Journal, c. 4, sy. 3, 2020, ss. 161-72, doi:10.35860/iarej.722229.
Vancouver Aycan MF, Demir T. Toggling effect on pullout performance of pedicle screws: Review. Int. Adv. Res. Eng. J. 2020;4(3):161-72.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.