Araştırma Makalesi
BibTex RIS Kaynak Göster

PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform

Yıl 2020, Cilt: 4 Sayı: 3, 233 - 238, 15.12.2020
https://doi.org/10.35860/iarej.730126

Öz

In this paper, the selective mapping (SLM) technique possessing the powerful and distortionless peak to average power ratio (PAPR) reduction capability was employed in universal filtered multicarrier (UFMC) waveform that is considered as one of the most promising fifth generation (5G) waveform candidates in order to provide a solution to the PAPR issue encountered in the related waveform. Owing to our SLM-based PAPR reduction implementation performed by employing the SLM scheme between the quadrate amplitude modulation (QAM) mapping and bandwidth-subdivision operations at the transmitter side, successful PAPR reduction results were achieved in a straightforward and effective manner. In the simulations, the effect of the related way of SLM application on alleviating the PAPR and spectral leakages of the UFMC signal amplified via the solid state power amplifier (SSPA) was investigated for various number of phase factor combinations. Besides, the impact of SLM on the bit error rate (BER) of the UFMC waveform was analyzed for varied values of SSPA parameters called smoothness (p) and input back off (IBO) controlling the linearity and operation point of the SSPA, respectively.

Destekleyen Kurum

Scientific Research Projects Coordination Unit of Erciyes University

Proje Numarası

FDK-2018-8463

Kaynakça

  • 1. Vakilian, V., T. Wild, F. Schaich, S.T. Brink, and J.F. Frigon, Universal-filtered multi-carrier technique for wireless systems beyond LTE, in GC Wkshps 2013: Atlanta. p. 223-228.
  • 2. Li, Y., B. Tian, K. Yi, and Q. Yu, A novel hybrid CFO estimation scheme for UFMC-based systems. IEEE Communications Letters, 2017. 21(6): p. 1337-1340.
  • 3. Wu, M., J. Dang, Z. Zhang, and L. Wu, An advanced receiver for universal filtered multicarrier. IEEE Transactions on Vehicular Technology, 2018. 67(8): p. 7779-7783.
  • 4. Duan, S., X. Yu, and R. Wang, Performance analysis on filter parameters and sub-bands distribution of universal filtered multi-carrier. Wireless Personal Communications, 2017. 95(3): p. 2359-2375.
  • 5. Chen, J.C. and C.K. Wen, PAPR reduction of OFDM signals using cross-entropy-based tone injection schemes. IEEE Signal Processing Letters, 2010. 17(8): p. 727-730.
  • 6. Krongold, B.S. and D.L. Jones, PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, 2003. 43(3): p. 258-268.
  • 7. Bauml, R.W., R.F.H. Fischer, and J.B. Huber, Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 1996. 32(22): p. 2056-2057.
  • 8. Wang, C.L. and Y. Quyang, Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems. IEEE Transactions on Signal Processing, 2005. 53(12): p. 4652-4660.
  • 9. Liang, H., H.C. Chu, and C.B. Lin, Peak-to-average power ratio reduction of orthogonal frequency division multiplexing systems using modified tone reservation techniques. International Journal of Communication Systems, 2016. 29(4): p. 748-759.
  • 10. Li, X. and L.J. Cimini, Effect of clipping and filtering on the performance of OFDM. IEEE Communications Letters, 1998. 2(5): p. 131-133.
  • 11. Jones A.E., T.A. Wilkinson, and S.K. Barton, Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme. Electronics Letters, 1994. 30(25): p. 2098-2099.
  • 12. Cimini, L.J. and N.R. Sollenberger, Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Communications Letters, 2000. 4(3): p. 86-88.
  • 13. Bozkurt, Y.T. and N. Taşpınar, PAPR reduction performance of bat algorithm in OFDM systems. International Advanced Researches and Engineering Journal, 2019. 3(3): p. 150-155.
  • 14. Jayalath, A.D.S. and C. Tellambura, Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving. Electronics Letters, 2000. 36(13): p. 1161-1163.
  • 15. Baig, I., U. Farooq, N.U. Hasan, M. Zghaibeh, A. Sajid, and U.M. Rana, A low PAPR DHT precoding based UFMC scheme for 5G communication systems, CoDIT 2019: Paris. p. 425-428.
  • 16. Taşpınar, N. and Ş. Şimşir, PAPR reduction based on partial transmit sequence technique in UFMC waveform, in CISTI 2019: Coimbra. p. 1-6.
  • 17. Tipan, M.N., J. Caceres, M.N. Jimenez, I.N. Cano, and G. Arevalo, Comparison of clipping techniques for PAPR reduction in UFMC systems, LATINCOM 2017: Guatemala City. p. 1-4.
  • 18. Rong, W., J. Cai, and X. Yu, Low-complexity PTS PAPR reduction scheme for UFMC systems. Cluster Computing, 2017. 20(11): p. 3427-3440.
  • 19. Ryu, H.G., J.S. Park, and J.S. Park, Threshold IBO of HPA in the predistorted OFDM communication system. IEEE Transactions on Broadcasting, 2004. 50(4): p. 425-428.
Yıl 2020, Cilt: 4 Sayı: 3, 233 - 238, 15.12.2020
https://doi.org/10.35860/iarej.730126

Öz

Proje Numarası

FDK-2018-8463

Kaynakça

  • 1. Vakilian, V., T. Wild, F. Schaich, S.T. Brink, and J.F. Frigon, Universal-filtered multi-carrier technique for wireless systems beyond LTE, in GC Wkshps 2013: Atlanta. p. 223-228.
  • 2. Li, Y., B. Tian, K. Yi, and Q. Yu, A novel hybrid CFO estimation scheme for UFMC-based systems. IEEE Communications Letters, 2017. 21(6): p. 1337-1340.
  • 3. Wu, M., J. Dang, Z. Zhang, and L. Wu, An advanced receiver for universal filtered multicarrier. IEEE Transactions on Vehicular Technology, 2018. 67(8): p. 7779-7783.
  • 4. Duan, S., X. Yu, and R. Wang, Performance analysis on filter parameters and sub-bands distribution of universal filtered multi-carrier. Wireless Personal Communications, 2017. 95(3): p. 2359-2375.
  • 5. Chen, J.C. and C.K. Wen, PAPR reduction of OFDM signals using cross-entropy-based tone injection schemes. IEEE Signal Processing Letters, 2010. 17(8): p. 727-730.
  • 6. Krongold, B.S. and D.L. Jones, PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, 2003. 43(3): p. 258-268.
  • 7. Bauml, R.W., R.F.H. Fischer, and J.B. Huber, Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 1996. 32(22): p. 2056-2057.
  • 8. Wang, C.L. and Y. Quyang, Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems. IEEE Transactions on Signal Processing, 2005. 53(12): p. 4652-4660.
  • 9. Liang, H., H.C. Chu, and C.B. Lin, Peak-to-average power ratio reduction of orthogonal frequency division multiplexing systems using modified tone reservation techniques. International Journal of Communication Systems, 2016. 29(4): p. 748-759.
  • 10. Li, X. and L.J. Cimini, Effect of clipping and filtering on the performance of OFDM. IEEE Communications Letters, 1998. 2(5): p. 131-133.
  • 11. Jones A.E., T.A. Wilkinson, and S.K. Barton, Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme. Electronics Letters, 1994. 30(25): p. 2098-2099.
  • 12. Cimini, L.J. and N.R. Sollenberger, Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Communications Letters, 2000. 4(3): p. 86-88.
  • 13. Bozkurt, Y.T. and N. Taşpınar, PAPR reduction performance of bat algorithm in OFDM systems. International Advanced Researches and Engineering Journal, 2019. 3(3): p. 150-155.
  • 14. Jayalath, A.D.S. and C. Tellambura, Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving. Electronics Letters, 2000. 36(13): p. 1161-1163.
  • 15. Baig, I., U. Farooq, N.U. Hasan, M. Zghaibeh, A. Sajid, and U.M. Rana, A low PAPR DHT precoding based UFMC scheme for 5G communication systems, CoDIT 2019: Paris. p. 425-428.
  • 16. Taşpınar, N. and Ş. Şimşir, PAPR reduction based on partial transmit sequence technique in UFMC waveform, in CISTI 2019: Coimbra. p. 1-6.
  • 17. Tipan, M.N., J. Caceres, M.N. Jimenez, I.N. Cano, and G. Arevalo, Comparison of clipping techniques for PAPR reduction in UFMC systems, LATINCOM 2017: Guatemala City. p. 1-4.
  • 18. Rong, W., J. Cai, and X. Yu, Low-complexity PTS PAPR reduction scheme for UFMC systems. Cluster Computing, 2017. 20(11): p. 3427-3440.
  • 19. Ryu, H.G., J.S. Park, and J.S. Park, Threshold IBO of HPA in the predistorted OFDM communication system. IEEE Transactions on Broadcasting, 2004. 50(4): p. 425-428.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Research Articles
Yazarlar

Şakir Şimşir 0000-0002-1287-160X

Necmi Taşpınar 0000-0003-4689-4487

Proje Numarası FDK-2018-8463
Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 30 Nisan 2020
Kabul Tarihi 6 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 3

Kaynak Göster

APA Şimşir, Ş., & Taşpınar, N. (2020). PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform. International Advanced Researches and Engineering Journal, 4(3), 233-238. https://doi.org/10.35860/iarej.730126
AMA Şimşir Ş, Taşpınar N. PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform. Int. Adv. Res. Eng. J. Aralık 2020;4(3):233-238. doi:10.35860/iarej.730126
Chicago Şimşir, Şakir, ve Necmi Taşpınar. “PAPR Reduction Using Selective Mapping Scheme in Universal Filtered Multicarrier Waveform”. International Advanced Researches and Engineering Journal 4, sy. 3 (Aralık 2020): 233-38. https://doi.org/10.35860/iarej.730126.
EndNote Şimşir Ş, Taşpınar N (01 Aralık 2020) PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform. International Advanced Researches and Engineering Journal 4 3 233–238.
IEEE Ş. Şimşir ve N. Taşpınar, “PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform”, Int. Adv. Res. Eng. J., c. 4, sy. 3, ss. 233–238, 2020, doi: 10.35860/iarej.730126.
ISNAD Şimşir, Şakir - Taşpınar, Necmi. “PAPR Reduction Using Selective Mapping Scheme in Universal Filtered Multicarrier Waveform”. International Advanced Researches and Engineering Journal 4/3 (Aralık 2020), 233-238. https://doi.org/10.35860/iarej.730126.
JAMA Şimşir Ş, Taşpınar N. PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform. Int. Adv. Res. Eng. J. 2020;4:233–238.
MLA Şimşir, Şakir ve Necmi Taşpınar. “PAPR Reduction Using Selective Mapping Scheme in Universal Filtered Multicarrier Waveform”. International Advanced Researches and Engineering Journal, c. 4, sy. 3, 2020, ss. 233-8, doi:10.35860/iarej.730126.
Vancouver Şimşir Ş, Taşpınar N. PAPR reduction using selective mapping scheme in universal filtered multicarrier waveform. Int. Adv. Res. Eng. J. 2020;4(3):233-8.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.