Araştırma Makalesi
BibTex RIS Kaynak Göster

Silicon dioxide thin films prepared by spin coating for the application of solar cells

Yıl 2021, Cilt: 5 Sayı: 1, 14 - 18, 15.04.2021
https://doi.org/10.35860/iarej.784328

Öz

In this study, Silicon Dioxide (SiO2) thin films processed by the spin coating method was studied with prepared solutions. Antireflection coating effect of deposited SiO2 thin films on crystalline silicon substrates was analyzed after optimizing the solution, deposition, and thermal treatment processes. The effect of ethanol dilution of the solution was investigated as well. Spectrophotometer reflectance measurements, Scanning Electron Microscopy (SEM) measurements and Afors-het based simulations were carried out. For the prepared solution based SiO2 thin films, the annealing temperature of 950 °C for 7 min in the air was determined as optimum. The minimum surface reflectance of SiO2 coated silicon surface could be reduced below 10% depending on the applied process. Based on the silicon solar cell device simulations, it was revealed that efficiency of a solar cell could be improved 4.23% more thanks to the antireflection coating effect.

Destekleyen Kurum

TUBITAK (The Scientific and Technological Research Council of Turkey)

Proje Numarası

119F063

Kaynakça

  • 1. Zhan, F., Z. Li, X. Shen, H. He, and J. Zeng, Design multilayer antireflection coatings for terrestrial solar cells. The Scientific World Journal, 2014. 265351.
  • 2. Lien, S.-Y., D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Solar Energy Materials and Solar Cells, 2006. 90(16): p. 2710-2719.
  • 3. Bouhafs, D., A. Moussi, A. Chikouche, and J. Ruiz, Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells. Solar Energy Materials and Solar Cells, 1998. 52(1-2): p. 79-93.
  • 4. Ko, J., D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, Double layer SiNx: H films for passivation and anti-reflection coating of c-Si solar cells. Thin solid films, 2011. 519(20): p. 6887-6891.
  • 5. Bacal, D.M., N.N. Lal, A.N. Jumabekov, Q. Hou, Y. Hu, J. Lu, A.S. Chesman, and U. Bach, Solution-processed antireflective coating for back-contact perovskite solar cells. Optics Express, 2020. 28(9): p. 12650-12660.
  • 6. Fathima, M.I. and K.J. Wilson. Antireflection coating application of zinc sulfide thin films by nebulizer spray pyrolysis technique. in AIP Conference Proceedings. 2019. AIP Publishing LLC.
  • 7. Reddy, K.C.S., C. Chingakham, B. Gupta, M.S. Prasad, S. Atchuta, and S. Sakthivel, Single compound in-situ synthesis of core-shell CaF2 nanoparticles based broad band antireflective coatings for solar energy conversion. Solar Energy, 2019. 190: p. 119-125.
  • 8. Saranam, V.R., C.-H. Chang, and B.K. Paul, A Foam-Core Meniscus Coating Process for Retrofit Anti-Reflective Coatings. Journal of Micro and Nano-Manufacturing, 2019. 7(3).
  • 9. Hinczewski, D.S., M. Hinczewski, F. Tepehan, and G. Tepehan, Optical filters from SiO2 and TiO2 multi-layers using sol–gel spin coating method. Solar energy materials and solar cells, 2005. 87(1-4): p. 181-196.
  • 10. Jeon, H.-J., S.-C. Yi, and S.-G. Oh, Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials, 2003. 24(27): p. 4921-4928.
  • 11. Zheng, C., F. Nie, Y. Zheng, Y. Cheng, S. Wei, L. Ruan, and R. Valiev, Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating. Applied Surface Science, 2011. 257(13): p. 5913-5918.
  • 12. Wuu, D.-S., C.-C. Lin, C.-N. Chen, H.-H. Lee, and J.-J. Huang, Properties of double-layer Al2O3/TiO2 antireflection coatings by liquid phase deposition. Thin Solid Films, 2015. 584: p. 248-252.
  • 13. Liang, Z., W. Li, B. Dong, Y. Sun, H. Tang, L. Zhao, and S. Wang, Double-function SiO2-DMS coating with antireflection and superhydrophobic surface. Chemical Physics Letters, 2019. 716: p. 211-214.
  • 14. Cho, E.-C., J. Xia, A.G. Aberle, and M.A. Green, Antireflection and surface passivation behaviour of SiO2/Si/SiO2 quantum wells on silicon. Solar energy materials and solar cells, 2002. 74(1-4): p. 147-154.
  • 15. Miao, L., L.F. Su, S. Tanemura, C.A. Fisher, L.L. Zhao, Q. Liang, and G. Xu, Cost-effective nanoporous SiO2–TiO2 coatings on glass substrates with antireflective and self-cleaning properties. Applied energy, 2013. 112: p. 1198-1205.
  • 16. Wang, J., J. Ge, H. Hou, M. Wang, G. Liu, G. Qiao, and Y. Wang, Design and sol–gel preparation of SiO2/TiO2 and SiO2/SnO2/SiO2–SnO2 multilayer antireflective coatings. Applied Surface Science, 2017. 422: p. 970-974.
  • 17. Guglielmi, M., A. Martucci, R. Almeida, H. Vasconcelos, E. Yeatman, E. Dawnay, and M. Fardad, Spinning deposition of silica and silica-titania optical coatings: A round robin test. Journal of materials research, 1998. 13(3): p. 731-738.
  • 18. Varache, R., C. Leendertz, M. Gueunier-Farret, J. Haschke, D. Muñoz, and L. Korte, Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Materials and Solar Cells, 2015. 141: p. 14-23.
  • 19. Ali, K., S.A. Khan, and M.M. Jafri, Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells. Int. J. Electrochem. Sci, 2014. 9(12): p. 7865-7874.
  • 20. Salman, K.A., K. Omar, and Z. Hassan, Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Solar Energy, 2012. 86(1): p. 541-547.
Yıl 2021, Cilt: 5 Sayı: 1, 14 - 18, 15.04.2021
https://doi.org/10.35860/iarej.784328

Öz

Proje Numarası

119F063

Kaynakça

  • 1. Zhan, F., Z. Li, X. Shen, H. He, and J. Zeng, Design multilayer antireflection coatings for terrestrial solar cells. The Scientific World Journal, 2014. 265351.
  • 2. Lien, S.-Y., D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Solar Energy Materials and Solar Cells, 2006. 90(16): p. 2710-2719.
  • 3. Bouhafs, D., A. Moussi, A. Chikouche, and J. Ruiz, Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells. Solar Energy Materials and Solar Cells, 1998. 52(1-2): p. 79-93.
  • 4. Ko, J., D. Gong, K. Pillai, K.-S. Lee, M. Ju, P. Choi, K.-R. Kim, J. Yi, and B. Choi, Double layer SiNx: H films for passivation and anti-reflection coating of c-Si solar cells. Thin solid films, 2011. 519(20): p. 6887-6891.
  • 5. Bacal, D.M., N.N. Lal, A.N. Jumabekov, Q. Hou, Y. Hu, J. Lu, A.S. Chesman, and U. Bach, Solution-processed antireflective coating for back-contact perovskite solar cells. Optics Express, 2020. 28(9): p. 12650-12660.
  • 6. Fathima, M.I. and K.J. Wilson. Antireflection coating application of zinc sulfide thin films by nebulizer spray pyrolysis technique. in AIP Conference Proceedings. 2019. AIP Publishing LLC.
  • 7. Reddy, K.C.S., C. Chingakham, B. Gupta, M.S. Prasad, S. Atchuta, and S. Sakthivel, Single compound in-situ synthesis of core-shell CaF2 nanoparticles based broad band antireflective coatings for solar energy conversion. Solar Energy, 2019. 190: p. 119-125.
  • 8. Saranam, V.R., C.-H. Chang, and B.K. Paul, A Foam-Core Meniscus Coating Process for Retrofit Anti-Reflective Coatings. Journal of Micro and Nano-Manufacturing, 2019. 7(3).
  • 9. Hinczewski, D.S., M. Hinczewski, F. Tepehan, and G. Tepehan, Optical filters from SiO2 and TiO2 multi-layers using sol–gel spin coating method. Solar energy materials and solar cells, 2005. 87(1-4): p. 181-196.
  • 10. Jeon, H.-J., S.-C. Yi, and S.-G. Oh, Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials, 2003. 24(27): p. 4921-4928.
  • 11. Zheng, C., F. Nie, Y. Zheng, Y. Cheng, S. Wei, L. Ruan, and R. Valiev, Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating. Applied Surface Science, 2011. 257(13): p. 5913-5918.
  • 12. Wuu, D.-S., C.-C. Lin, C.-N. Chen, H.-H. Lee, and J.-J. Huang, Properties of double-layer Al2O3/TiO2 antireflection coatings by liquid phase deposition. Thin Solid Films, 2015. 584: p. 248-252.
  • 13. Liang, Z., W. Li, B. Dong, Y. Sun, H. Tang, L. Zhao, and S. Wang, Double-function SiO2-DMS coating with antireflection and superhydrophobic surface. Chemical Physics Letters, 2019. 716: p. 211-214.
  • 14. Cho, E.-C., J. Xia, A.G. Aberle, and M.A. Green, Antireflection and surface passivation behaviour of SiO2/Si/SiO2 quantum wells on silicon. Solar energy materials and solar cells, 2002. 74(1-4): p. 147-154.
  • 15. Miao, L., L.F. Su, S. Tanemura, C.A. Fisher, L.L. Zhao, Q. Liang, and G. Xu, Cost-effective nanoporous SiO2–TiO2 coatings on glass substrates with antireflective and self-cleaning properties. Applied energy, 2013. 112: p. 1198-1205.
  • 16. Wang, J., J. Ge, H. Hou, M. Wang, G. Liu, G. Qiao, and Y. Wang, Design and sol–gel preparation of SiO2/TiO2 and SiO2/SnO2/SiO2–SnO2 multilayer antireflective coatings. Applied Surface Science, 2017. 422: p. 970-974.
  • 17. Guglielmi, M., A. Martucci, R. Almeida, H. Vasconcelos, E. Yeatman, E. Dawnay, and M. Fardad, Spinning deposition of silica and silica-titania optical coatings: A round robin test. Journal of materials research, 1998. 13(3): p. 731-738.
  • 18. Varache, R., C. Leendertz, M. Gueunier-Farret, J. Haschke, D. Muñoz, and L. Korte, Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Materials and Solar Cells, 2015. 141: p. 14-23.
  • 19. Ali, K., S.A. Khan, and M.M. Jafri, Effect of double layer (SiO2/TiO2) anti-reflective coating on silicon solar cells. Int. J. Electrochem. Sci, 2014. 9(12): p. 7865-7874.
  • 20. Salman, K.A., K. Omar, and Z. Hassan, Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Solar Energy, 2012. 86(1): p. 541-547.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Research Articles
Yazarlar

İmran Kanmaz 0000-0001-8827-1590

Abdullah Üzüm 0000-0001-5324-8892

Proje Numarası 119F063
Yayımlanma Tarihi 15 Nisan 2021
Gönderilme Tarihi 24 Ağustos 2020
Kabul Tarihi 6 Kasım 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Kanmaz, İ., & Üzüm, A. (2021). Silicon dioxide thin films prepared by spin coating for the application of solar cells. International Advanced Researches and Engineering Journal, 5(1), 14-18. https://doi.org/10.35860/iarej.784328
AMA Kanmaz İ, Üzüm A. Silicon dioxide thin films prepared by spin coating for the application of solar cells. Int. Adv. Res. Eng. J. Nisan 2021;5(1):14-18. doi:10.35860/iarej.784328
Chicago Kanmaz, İmran, ve Abdullah Üzüm. “Silicon Dioxide Thin Films Prepared by Spin Coating for the Application of Solar Cells”. International Advanced Researches and Engineering Journal 5, sy. 1 (Nisan 2021): 14-18. https://doi.org/10.35860/iarej.784328.
EndNote Kanmaz İ, Üzüm A (01 Nisan 2021) Silicon dioxide thin films prepared by spin coating for the application of solar cells. International Advanced Researches and Engineering Journal 5 1 14–18.
IEEE İ. Kanmaz ve A. Üzüm, “Silicon dioxide thin films prepared by spin coating for the application of solar cells”, Int. Adv. Res. Eng. J., c. 5, sy. 1, ss. 14–18, 2021, doi: 10.35860/iarej.784328.
ISNAD Kanmaz, İmran - Üzüm, Abdullah. “Silicon Dioxide Thin Films Prepared by Spin Coating for the Application of Solar Cells”. International Advanced Researches and Engineering Journal 5/1 (Nisan 2021), 14-18. https://doi.org/10.35860/iarej.784328.
JAMA Kanmaz İ, Üzüm A. Silicon dioxide thin films prepared by spin coating for the application of solar cells. Int. Adv. Res. Eng. J. 2021;5:14–18.
MLA Kanmaz, İmran ve Abdullah Üzüm. “Silicon Dioxide Thin Films Prepared by Spin Coating for the Application of Solar Cells”. International Advanced Researches and Engineering Journal, c. 5, sy. 1, 2021, ss. 14-18, doi:10.35860/iarej.784328.
Vancouver Kanmaz İ, Üzüm A. Silicon dioxide thin films prepared by spin coating for the application of solar cells. Int. Adv. Res. Eng. J. 2021;5(1):14-8.

Cited By













Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.