Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 2, 142 - 151, 15.08.2021
https://doi.org/10.35860/iarej.818668

Öz

Kaynakça

  • 1. Gupta M., V. Singh, R. Kumar, and Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications. Renewable & Sustainable Energy Reviews, 2017. 74: p. 638–670.
  • 2. Murshed S.M.S. and P Estellé, A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 2017. 76: p. 1134-1152.
  • 3. Ahmadi M.H., A. Mirlohi, A.M. Nazari, and R. Ghasempour, A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids, 2018. 265: p. 181-188.
  • 4. Kaplan M. and M.O. Carpinlioglu, An extensive review on nanofluids - based on available experimental studies. Proceedings of 2nd International Symposium on Innovative Approaches in Scientific Studies: Samsun; 2018. p. 104-116.
  • 5. Munyalo J.M. and X. Zhang. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review. Journal of Molecular Liquids, 2018. 265: p. 77-87.
  • 6. Maxwell J.C., A treatise on electricity and magnetism (volume 1). 1881, Clarendon press series.
  • 7. Hamilton R.L. and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962. 1(3): p. 187–191.
  • 8. Koo J. and C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks. International Journal of Heat Mass Transfer, 2005. 48(13): p. 2652–2661.
  • 9. Das S., N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 2003. 125: p. 567–574.
  • 10. Vajjha R.S. and D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat Mass Transfer, 2009 52: p. 4675–4682.
  • 11. Patel H., T. Sundararajan, and S. Das, An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 2010. 12(3): p. 1015–1031.
  • 12. Corcione M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 2011. 52(1): p. 789–793.
  • 13. Azmi W.H., K.V. Sharma, R. Mamat, A.B.S. Alias, and I.I. Misnon, Correlations for thermal conductivity and viscosity of water based nanofluids.IOP Conference Series: Materials Science and Engineering, 2012. 36(1): 012029.
  • 14. Hassani S., R. Saidur, S. Mekhilef, and A. Hepbasli, A new correlation for predicting the thermal conductivity of nanofluids using dimensional analysis, International Journal of Heat Mass Transfer, 2015. 90: p. 121–130.
  • 15. Nadooshan A., An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Physica E: Low-dimensional Systems and Nanostructures, 2017. 87: p. 15–9.
  • 16. Kaplan M. and M.O. Carpinlioglu, Correlations for calculation of relative thermal conductivity of nanofluids using dimensionless parameters. ICAME 2019 - 5th International Conference on Advances in Mechanical Engineering, Istanbul, 2019. p. 1890-1896.
  • 17. Garoosi F., Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technology, 2020. 366: 788–820.
  • 18. Arasu A.V., D.D. Kumar, and I.A Khan, Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. International Communications in Heat and Mass Transfer, 202. 120: 104910.
  • 19. Einstein A., A new determination of molecular dimensions, Annals of Physics, 1906. 19(2): p. 289–306.
  • 20. Graham A.L., On the viscosity of suspensions of solid spheres. Applied Scientific Research, 1981. 37: 275–286.
  • 21. Chen H., Y. Ding, and C. Tan, Rheological behaviour of nanofluids, New Journal of Physics, 2007. 9(10): 367.
  • 22. Masoumi N., N. Sohrabi, and A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, Journal of Physics D: Applied Physics, 2009. 42(5): 055501.
  • 23. Hosseini S.M., A. Moghadassi, and D.E. Henneke, A new dimensionless group model for determining the viscosity of nanofluids. Journal of Thermal Analysis and Calorimetry, 2010. 100(3): p. 873–877.
  • 24. Adio S.A., M. Mehrabi, M. Sharifpur, and J.P. Meyer, Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. International Communications in Heat and Mass Transfer, 2016. 72: p. 71–83.
  • 25. Akilu S., A.T. Bahita, and K.V. Sharma, Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquids, 2017. 246: p. 396–405.
  • 26. Kaplan M. and M.O. Carpinlioglu, Correlations for calculation of relative dynamic viscosity of nanofluids using dimensionless parameters. ICAME 2019 - 5th International Conference on Advances in Mechanical Engineering, Istanbul, 2019. p. 1897-1903.
  • 27. Esfe M.F. and S.M. Motallebi, Optimization, modeling, and prediction of relative viscosity and relative thermal conductivity of AlN nano-powders suspended in EG. The European physical journal plus, 2021. 136: 56.
  • 28. Masuda H., A. Ebata, K. Teramae, and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles, Netsu Bussei (in Japanese), 1993. 4: p. 227–233.
  • 29. Wang X., X. Xu, and S.U.S. Choi, Thermal conductivity of nanoparticles–fluid mixture. Journal of Thermophysics and Heat Transfer, 1999. 13(4): p. 474–480.
  • 30. Liu M.S., M.C.C. Lin, I.T. Huang, C.C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer, 2005. 32(9): p. 1202–1210.
  • 31. Zhang X., H. Gu, and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science, 2007. 31: p. 593–599.
  • 32. Duangthongsuk W. and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Experimental Thermal and Fluid Science, 2009. 33(4): p. 706–714.
  • 33. Mintsa H.A., G. Roy, C.T. Nguyen, and D. Doucetet, New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 2009. 48(2): p. 363-371.
  • 34. Yu W., H. Xie, L. Chen, and Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Including results for Thermochimica Acta, 2009. 491(1): p. 92–96.
  • 35. Godson L., B. Raja, D.M. Lal, and S. Wongwises, Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Experimental Heat Transfer 2010. 23(4): p. 317–332.
  • 36. Murshed S.M.S, Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transfer Engineering, 2012. 33(8): p. 722–731.
  • 37. Kumaresan V. and R. Velraj, Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Including results for Thermochimica Acta, 2012. 545: p. 180–186.
  • 38. Sundar L.S., E.V. Ramana, M.K. Singh, and A.C.M. Sousa, Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study, International Communications in Heat and Mass Transfer, 2014. 56: p. 86–95.
  • 39. Zyla G. and J. Fal, Viscosity, thermal and electrical conductivity of silicondioxide–ethylene glycol transparent nanofluids: An experimental studies, Including results for Thermochimica Acta, 2017. 650: p. 106–113.
  • 40. Bergman T.L., A.S. Lavine, F.P. Incropera, and D.P. DeWitt, Fundamentals of heat and mass transfer, 2011, John Wiley & Sons.
  • 41. Li T., S. Li, J. Zhao, P. Lu, and L. Meng, Sphericities of non-spherical objects. Particuology, 2012. 10: p. 97–104.
  • 42. ASHRAE, ASHRAE Handbook-Fundamentals, 2001. American Society of Heating, Refrigerating and Air-conditioning Engineers Inc., Atlanta.
  • 43. Namburu P.K., D.P. Kulkarni, D. Misra, and D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science, 2007. 32(2): p. 397–402.
  • 44. Suganthi K.S. and K.S. Rajan, Temperature induced changes in ZnO – water nanofluid: zeta potential, size distribution and viscosity profiles. International Journal of Heat Mass Transfer, 2012. 55(25): p. 7969–7980.
  • 45. Halelfadl S., P. Estellé, B. Aladag N. Doner, and T. Maré, Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. International Journal of Thermal Sciences, 2013. 71: p. 111–117.
  • 46. Ghanbarpour M., E.B. Haghigi, R. Khodabandeh, Thermal properties and rheological behaviour of water based Al2O3 nanofluid as a heat transfer fluid, Experimental Thermal and Fluid Science, 2014. 53: p. 227-235.
  • 47. Pastoriza-Gallego M. J., L. Lugo, D. Cabaleiro, J. L. Legido, and M.M. Piñeiro, Thermophysical profile of ethylene glycol-based ZnO nanofluids, The Journal of Chemical Thermodynamics, 2014. 73: 23–30.
  • 48. Rahmati A.R. and M. Reiszadeh, An experimental study on the effects of the use of multi-walled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations. Applied Thermal Engineering, 2018. 134: p. 107–117.
  • 49. Oztop H.F. and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat Fluid Flow, 2008. 29(5): p. 1326–1336.
  • 50. Rabbani P., A. Hamzehpour, M. Ashjaee, M. Najafi, and E. Houshfar, Experimental investigation on heat transfer of MgO nanofluid in tubes partially filled with metal foam. Powder Technology 354 (2019) 734-742
  • 51. Alawi O.A., N.A.C. Sidik, H.W. Xian, T.H. Kean, S.N. Kazi, Thermal conductivity and viscosity models of metallic oxides nanofluids. International Journal of Heat Mass Transfer, 2018. 116: p. 1314–1325.
  • 52. Jenei P., C. Balázsi, Á. Horváth, K. Balázsi, and J. Gubicza, The influence of carbon nanotube addition on the phase composition, microstructure and mechanical properties of 316L stainless steel consolidated by spark plasma sintering, Journal of Materials Research and Technology., 2019. 8(1): p. 1141-1149.
  • 53. Carpinlioglu M.O. and M. Kaplan., A correlation approach for the calculation of thermal conductivity of nanofluids as a function of dynamic viscosity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 242.

Proposed new equations for calculation of thermophysical properties of nanofluids

Yıl 2021, Cilt: 5 Sayı: 2, 142 - 151, 15.08.2021
https://doi.org/10.35860/iarej.818668

Öz

A trial-error procedure is applied for the derivation of correlations to estimate the relative thermal conductivity (kr) and dynamic viscosity (µr) of nanofluids using MATLAB. Thermophysical properties of particles and base fluids, particle diameter (dp), sphericity, capping layer thickness, Brownian motion of a particle, temperature, and volume fraction (φ) are considered. The accuracy of predicting kr and µr of nanofluids is developed using dimensionless parameters involving base fluid and particle characteristics. The results reveal that the estimated values are in a good agreement with the experimental data with a standard deviation of 2.16% and 8.16% for kr and µr of nanofluids, respectively. Besides that, 97.5% of the predicted kr values suit experimental data of kr with a mean deviation of ±5%, whereas 90.4% of the estimated µr values match the data of µr with a mean deviation of ±10%. Therefore, the proposed new equations will be useful for numerical simulation studies and the engineering design of heat transfer devices such as refrigeration systems, solar collectors, and heat exchangers.

Kaynakça

  • 1. Gupta M., V. Singh, R. Kumar, and Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications. Renewable & Sustainable Energy Reviews, 2017. 74: p. 638–670.
  • 2. Murshed S.M.S. and P Estellé, A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 2017. 76: p. 1134-1152.
  • 3. Ahmadi M.H., A. Mirlohi, A.M. Nazari, and R. Ghasempour, A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids, 2018. 265: p. 181-188.
  • 4. Kaplan M. and M.O. Carpinlioglu, An extensive review on nanofluids - based on available experimental studies. Proceedings of 2nd International Symposium on Innovative Approaches in Scientific Studies: Samsun; 2018. p. 104-116.
  • 5. Munyalo J.M. and X. Zhang. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review. Journal of Molecular Liquids, 2018. 265: p. 77-87.
  • 6. Maxwell J.C., A treatise on electricity and magnetism (volume 1). 1881, Clarendon press series.
  • 7. Hamilton R.L. and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962. 1(3): p. 187–191.
  • 8. Koo J. and C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks. International Journal of Heat Mass Transfer, 2005. 48(13): p. 2652–2661.
  • 9. Das S., N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 2003. 125: p. 567–574.
  • 10. Vajjha R.S. and D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat Mass Transfer, 2009 52: p. 4675–4682.
  • 11. Patel H., T. Sundararajan, and S. Das, An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 2010. 12(3): p. 1015–1031.
  • 12. Corcione M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management, 2011. 52(1): p. 789–793.
  • 13. Azmi W.H., K.V. Sharma, R. Mamat, A.B.S. Alias, and I.I. Misnon, Correlations for thermal conductivity and viscosity of water based nanofluids.IOP Conference Series: Materials Science and Engineering, 2012. 36(1): 012029.
  • 14. Hassani S., R. Saidur, S. Mekhilef, and A. Hepbasli, A new correlation for predicting the thermal conductivity of nanofluids using dimensional analysis, International Journal of Heat Mass Transfer, 2015. 90: p. 121–130.
  • 15. Nadooshan A., An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Physica E: Low-dimensional Systems and Nanostructures, 2017. 87: p. 15–9.
  • 16. Kaplan M. and M.O. Carpinlioglu, Correlations for calculation of relative thermal conductivity of nanofluids using dimensionless parameters. ICAME 2019 - 5th International Conference on Advances in Mechanical Engineering, Istanbul, 2019. p. 1890-1896.
  • 17. Garoosi F., Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technology, 2020. 366: 788–820.
  • 18. Arasu A.V., D.D. Kumar, and I.A Khan, Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. International Communications in Heat and Mass Transfer, 202. 120: 104910.
  • 19. Einstein A., A new determination of molecular dimensions, Annals of Physics, 1906. 19(2): p. 289–306.
  • 20. Graham A.L., On the viscosity of suspensions of solid spheres. Applied Scientific Research, 1981. 37: 275–286.
  • 21. Chen H., Y. Ding, and C. Tan, Rheological behaviour of nanofluids, New Journal of Physics, 2007. 9(10): 367.
  • 22. Masoumi N., N. Sohrabi, and A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, Journal of Physics D: Applied Physics, 2009. 42(5): 055501.
  • 23. Hosseini S.M., A. Moghadassi, and D.E. Henneke, A new dimensionless group model for determining the viscosity of nanofluids. Journal of Thermal Analysis and Calorimetry, 2010. 100(3): p. 873–877.
  • 24. Adio S.A., M. Mehrabi, M. Sharifpur, and J.P. Meyer, Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. International Communications in Heat and Mass Transfer, 2016. 72: p. 71–83.
  • 25. Akilu S., A.T. Bahita, and K.V. Sharma, Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquids, 2017. 246: p. 396–405.
  • 26. Kaplan M. and M.O. Carpinlioglu, Correlations for calculation of relative dynamic viscosity of nanofluids using dimensionless parameters. ICAME 2019 - 5th International Conference on Advances in Mechanical Engineering, Istanbul, 2019. p. 1897-1903.
  • 27. Esfe M.F. and S.M. Motallebi, Optimization, modeling, and prediction of relative viscosity and relative thermal conductivity of AlN nano-powders suspended in EG. The European physical journal plus, 2021. 136: 56.
  • 28. Masuda H., A. Ebata, K. Teramae, and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles, Netsu Bussei (in Japanese), 1993. 4: p. 227–233.
  • 29. Wang X., X. Xu, and S.U.S. Choi, Thermal conductivity of nanoparticles–fluid mixture. Journal of Thermophysics and Heat Transfer, 1999. 13(4): p. 474–480.
  • 30. Liu M.S., M.C.C. Lin, I.T. Huang, C.C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer, 2005. 32(9): p. 1202–1210.
  • 31. Zhang X., H. Gu, and M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science, 2007. 31: p. 593–599.
  • 32. Duangthongsuk W. and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Experimental Thermal and Fluid Science, 2009. 33(4): p. 706–714.
  • 33. Mintsa H.A., G. Roy, C.T. Nguyen, and D. Doucetet, New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 2009. 48(2): p. 363-371.
  • 34. Yu W., H. Xie, L. Chen, and Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Including results for Thermochimica Acta, 2009. 491(1): p. 92–96.
  • 35. Godson L., B. Raja, D.M. Lal, and S. Wongwises, Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Experimental Heat Transfer 2010. 23(4): p. 317–332.
  • 36. Murshed S.M.S, Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transfer Engineering, 2012. 33(8): p. 722–731.
  • 37. Kumaresan V. and R. Velraj, Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Including results for Thermochimica Acta, 2012. 545: p. 180–186.
  • 38. Sundar L.S., E.V. Ramana, M.K. Singh, and A.C.M. Sousa, Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study, International Communications in Heat and Mass Transfer, 2014. 56: p. 86–95.
  • 39. Zyla G. and J. Fal, Viscosity, thermal and electrical conductivity of silicondioxide–ethylene glycol transparent nanofluids: An experimental studies, Including results for Thermochimica Acta, 2017. 650: p. 106–113.
  • 40. Bergman T.L., A.S. Lavine, F.P. Incropera, and D.P. DeWitt, Fundamentals of heat and mass transfer, 2011, John Wiley & Sons.
  • 41. Li T., S. Li, J. Zhao, P. Lu, and L. Meng, Sphericities of non-spherical objects. Particuology, 2012. 10: p. 97–104.
  • 42. ASHRAE, ASHRAE Handbook-Fundamentals, 2001. American Society of Heating, Refrigerating and Air-conditioning Engineers Inc., Atlanta.
  • 43. Namburu P.K., D.P. Kulkarni, D. Misra, and D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science, 2007. 32(2): p. 397–402.
  • 44. Suganthi K.S. and K.S. Rajan, Temperature induced changes in ZnO – water nanofluid: zeta potential, size distribution and viscosity profiles. International Journal of Heat Mass Transfer, 2012. 55(25): p. 7969–7980.
  • 45. Halelfadl S., P. Estellé, B. Aladag N. Doner, and T. Maré, Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. International Journal of Thermal Sciences, 2013. 71: p. 111–117.
  • 46. Ghanbarpour M., E.B. Haghigi, R. Khodabandeh, Thermal properties and rheological behaviour of water based Al2O3 nanofluid as a heat transfer fluid, Experimental Thermal and Fluid Science, 2014. 53: p. 227-235.
  • 47. Pastoriza-Gallego M. J., L. Lugo, D. Cabaleiro, J. L. Legido, and M.M. Piñeiro, Thermophysical profile of ethylene glycol-based ZnO nanofluids, The Journal of Chemical Thermodynamics, 2014. 73: 23–30.
  • 48. Rahmati A.R. and M. Reiszadeh, An experimental study on the effects of the use of multi-walled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations. Applied Thermal Engineering, 2018. 134: p. 107–117.
  • 49. Oztop H.F. and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat Fluid Flow, 2008. 29(5): p. 1326–1336.
  • 50. Rabbani P., A. Hamzehpour, M. Ashjaee, M. Najafi, and E. Houshfar, Experimental investigation on heat transfer of MgO nanofluid in tubes partially filled with metal foam. Powder Technology 354 (2019) 734-742
  • 51. Alawi O.A., N.A.C. Sidik, H.W. Xian, T.H. Kean, S.N. Kazi, Thermal conductivity and viscosity models of metallic oxides nanofluids. International Journal of Heat Mass Transfer, 2018. 116: p. 1314–1325.
  • 52. Jenei P., C. Balázsi, Á. Horváth, K. Balázsi, and J. Gubicza, The influence of carbon nanotube addition on the phase composition, microstructure and mechanical properties of 316L stainless steel consolidated by spark plasma sintering, Journal of Materials Research and Technology., 2019. 8(1): p. 1141-1149.
  • 53. Carpinlioglu M.O. and M. Kaplan., A correlation approach for the calculation of thermal conductivity of nanofluids as a function of dynamic viscosity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(5): 242.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Nanoteknoloji
Bölüm Research Articles
Yazarlar

Mahmut Kaplan 0000-0003-2675-9229

Melda Özdinç Çarpınlıoğlu 0000-0002-7531-8000

Yayımlanma Tarihi 15 Ağustos 2021
Gönderilme Tarihi 30 Ekim 2020
Kabul Tarihi 5 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Kaplan, M., & Özdinç Çarpınlıoğlu, M. (2021). Proposed new equations for calculation of thermophysical properties of nanofluids. International Advanced Researches and Engineering Journal, 5(2), 142-151. https://doi.org/10.35860/iarej.818668
AMA Kaplan M, Özdinç Çarpınlıoğlu M. Proposed new equations for calculation of thermophysical properties of nanofluids. Int. Adv. Res. Eng. J. Ağustos 2021;5(2):142-151. doi:10.35860/iarej.818668
Chicago Kaplan, Mahmut, ve Melda Özdinç Çarpınlıoğlu. “Proposed New Equations for Calculation of Thermophysical Properties of Nanofluids”. International Advanced Researches and Engineering Journal 5, sy. 2 (Ağustos 2021): 142-51. https://doi.org/10.35860/iarej.818668.
EndNote Kaplan M, Özdinç Çarpınlıoğlu M (01 Ağustos 2021) Proposed new equations for calculation of thermophysical properties of nanofluids. International Advanced Researches and Engineering Journal 5 2 142–151.
IEEE M. Kaplan ve M. Özdinç Çarpınlıoğlu, “Proposed new equations for calculation of thermophysical properties of nanofluids”, Int. Adv. Res. Eng. J., c. 5, sy. 2, ss. 142–151, 2021, doi: 10.35860/iarej.818668.
ISNAD Kaplan, Mahmut - Özdinç Çarpınlıoğlu, Melda. “Proposed New Equations for Calculation of Thermophysical Properties of Nanofluids”. International Advanced Researches and Engineering Journal 5/2 (Ağustos 2021), 142-151. https://doi.org/10.35860/iarej.818668.
JAMA Kaplan M, Özdinç Çarpınlıoğlu M. Proposed new equations for calculation of thermophysical properties of nanofluids. Int. Adv. Res. Eng. J. 2021;5:142–151.
MLA Kaplan, Mahmut ve Melda Özdinç Çarpınlıoğlu. “Proposed New Equations for Calculation of Thermophysical Properties of Nanofluids”. International Advanced Researches and Engineering Journal, c. 5, sy. 2, 2021, ss. 142-51, doi:10.35860/iarej.818668.
Vancouver Kaplan M, Özdinç Çarpınlıoğlu M. Proposed new equations for calculation of thermophysical properties of nanofluids. Int. Adv. Res. Eng. J. 2021;5(2):142-51.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.