Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 2, 181 - 187, 15.08.2021
https://doi.org/10.35860/iarej.839108

Öz

Kaynakça

  • 1. Atilio I., Braga, V., Siqueira, R. H. M, Carvalho, S. M., Lima, M. S. F., Comparing the weldability of AA6013‑t4 aluminium alloy on DP600 dual‑phase steel with laser welding and resistance spot welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020. 42(71): p. 1-12.
  • 2. Şimşek, İ., Şimşek, D., Özyürek, D., The effect of different sliding speeds on wear behavior of ZrO2 reinforcement aluminium matrix composite materials. Internatinoal Advanced Researches and Engineering Journal, 2020. 4(1): p. 1-7.
  • 3. Wilm, A., Physico-metallurgical investigations of aluminium alloys containing magnesium. Metallurgie, 1911. 8: p. 255-227.
  • 4. Guinier, A., Structure of age-hardened aluminium-copper alloys. Nature, 1938. 14: p. 569–570.
  • 5. Preston, G. D., The diffraction of x-rays by age-hardening aluminium copper alloys. Proceedings of the Royal Society of London, 1938. 167(931): p. 526-538.
  • 6. Dutta, I., Allen, S.M., A calorimetric of precipitation in commercial aluminum alloy 6061. Journal of Materials Science Letters, 1991. 10: p. 323-326.
  • 7. Pogatscher, S., Antrekowitsch, H., Leitner, H., Ebner, T., Uggowitzer, P. J., Mechanisms controlling the artificial aging of Al–Mg–Si alloys. Acta Materialia, 2011. 59: p. 3352-3363.
  • 8. Kaneko, R.S., Bakow, L., Lee, E.W., Aluminum alloy 6013 sheet for new U.S. navy aircraft. JOM, 1990. 42: p. 16-18.
  • 9. Staab, T.E.M., Krause-Rehberg, R., Hornauer, U., Zschech, E., Study of artificial aging in AlMgSi (6061) and AlMgSiCu (6013) alloys by Positron Annihilation. Journal of Material Science, 2006. 41: p. 1059–1066.
  • 10. Buha, J., Lumley, R.N., Crosky, A.G., Hono, K., Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Materialia, 2007. 55: p. 3015-3024.
  • 11. Barbosa, C., Rebello, J.M.A., Acselrad, O., Dille, J., Delplancke, J.-L., Identification of precipitates in 6013 aluminum alloy (Al-Mg-Si-Cu). International Journal of Materials Research, 2002. 93(3): p. 208-211.
  • 12. Erdoğan, M., Tekin, R., Kaya, M., Mikrodalga firinda suni yaşlandirilan 6013 alüminyum alaşimin korozyon davranişinin incelenmesi (Investigation of corrosion behavior of 6013 aluminum alloy aged artificially in microwave oven). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2014. 20(1): p. 25-30.
  • 13. Abo Zeid, E.F., Mechanical and electrochemical characteristics of solutionized AA 6061, AA6013 and AA 5086 aluminum alloys. Journal of Materials Research and Technology, 2019. 8(2): p. 1870-1877.
  • 14. Liu, M., Jiang, T., Wang, J., Liu, Q., Wu, Z., Yu, Y., Skaret, P.C., Roven, H. J., Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation. Transactions of Nonferrous Metals Society of China, 2014. 24: p. 3858-3865.
  • 15. Akyüz, B., Şenaysoy, S., Effect of the aging process on mechanical properties and machinability in AA6013 aluminum alloys. Scientific Research and Essays, 2015. 10(2): p. 17-78.
  • 16. Akyüz, B., Şenaysoy, S., Effect of aging on mechanical properties and machining on aluminum alloys. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2014. 1(1): p. 1-9.
  • 17. Cuniberiti, A., Tolley, A., Castro Riglos, M.V., Giovachini, R., Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Materials Science and Engineering A, 2010. 527: p. 5307-5311.
  • 18. Esmaeili, S., Wang, X., Lloyd, D.J., Poole, W.J., On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metallurgical and Materials Transactions A, 2003. 34: p. 751-763.
  • 19. Murayama, M., Hono, K., Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Materialia, 1999. 47(5): p. 1537-1548.
  • 20. Heat Treating, ASM Handbook, Volume 4 (1991): Heat Treating of Aluminum Alloys.
  • 21. Das, S., Pelcastre, L., Hardell, J., Prakash, B., Effect of static and dynamic ageing on wear and friction behavior of aluminum 6082 alloy. Tribology International, 2013. 60: p. 1-9.
  • 22. Meyveci, A., Karacan, İ., Çalıgülü, U., Durmuş, H., Pin-on-disc chracterization of 2xxx and 6xxx aluminum alloys aged by precipitation age hardening. Journal of Alloys and Compounds, 2010. 491: p. 278-283.
  • 23. Baydoğan, M., Çimenoğlu, H., Kayali E.S., A study on sliding wear of a 7075 aluminum alloy. Wear, 2004. 257: p .852-861.
  • 24. Gavgali, M., Totik, Y., Sadeler, R., The effects of artificial aging on wear properties of AA 6063 alloy. Materials Letters, 2003. 57: p. 3713-3721.
  • 25. Meriç. C., Atik, E., Kaçar, H., Effect of aging on abrasive wear of deformable aluminum alloy AA6351. Metal Science and Heat Treatment, 2004. 46(3-4): p. 110-114.

Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu)

Yıl 2021, Cilt: 5 Sayı: 2, 181 - 187, 15.08.2021
https://doi.org/10.35860/iarej.839108

Öz

In this study, the effect of artificial aging parameters, applied to AA6013 aluminum alloys commonly used in the automotive and aerospace sectors, on wear resistance was examined. For this purpose, AA6013 aluminum alloy samples were solutionized at 575 °C for 60 minutes and then they were artificially aged for 2, 4, and 6 hours at 180 and 200 °C temperatures. Mean hardness was measured as 66.6 HV in the solutionized samples taken. It was determined that as a result of artificial aging, α-AlFeMnSi intermetallic phase precipitation were formed between α-Al grains. By the effect of precipitation hardening, an increase in hardness was observed in all artificially aged samples; the highest hardness was found as an average of 149.3 HV in AA6013 samples aged artificially for 2 hours at 200 °C. A general decrease in the friction coefficients of samples aged at both 180 °C and 200 °C was observed along with the artificial aging temperature. The lowest specific wear rate was determined as 3.542x10-3 mm3/Nm in the AA6013 sample aged artificially for 2 hours at 200 °C.

Kaynakça

  • 1. Atilio I., Braga, V., Siqueira, R. H. M, Carvalho, S. M., Lima, M. S. F., Comparing the weldability of AA6013‑t4 aluminium alloy on DP600 dual‑phase steel with laser welding and resistance spot welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020. 42(71): p. 1-12.
  • 2. Şimşek, İ., Şimşek, D., Özyürek, D., The effect of different sliding speeds on wear behavior of ZrO2 reinforcement aluminium matrix composite materials. Internatinoal Advanced Researches and Engineering Journal, 2020. 4(1): p. 1-7.
  • 3. Wilm, A., Physico-metallurgical investigations of aluminium alloys containing magnesium. Metallurgie, 1911. 8: p. 255-227.
  • 4. Guinier, A., Structure of age-hardened aluminium-copper alloys. Nature, 1938. 14: p. 569–570.
  • 5. Preston, G. D., The diffraction of x-rays by age-hardening aluminium copper alloys. Proceedings of the Royal Society of London, 1938. 167(931): p. 526-538.
  • 6. Dutta, I., Allen, S.M., A calorimetric of precipitation in commercial aluminum alloy 6061. Journal of Materials Science Letters, 1991. 10: p. 323-326.
  • 7. Pogatscher, S., Antrekowitsch, H., Leitner, H., Ebner, T., Uggowitzer, P. J., Mechanisms controlling the artificial aging of Al–Mg–Si alloys. Acta Materialia, 2011. 59: p. 3352-3363.
  • 8. Kaneko, R.S., Bakow, L., Lee, E.W., Aluminum alloy 6013 sheet for new U.S. navy aircraft. JOM, 1990. 42: p. 16-18.
  • 9. Staab, T.E.M., Krause-Rehberg, R., Hornauer, U., Zschech, E., Study of artificial aging in AlMgSi (6061) and AlMgSiCu (6013) alloys by Positron Annihilation. Journal of Material Science, 2006. 41: p. 1059–1066.
  • 10. Buha, J., Lumley, R.N., Crosky, A.G., Hono, K., Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Materialia, 2007. 55: p. 3015-3024.
  • 11. Barbosa, C., Rebello, J.M.A., Acselrad, O., Dille, J., Delplancke, J.-L., Identification of precipitates in 6013 aluminum alloy (Al-Mg-Si-Cu). International Journal of Materials Research, 2002. 93(3): p. 208-211.
  • 12. Erdoğan, M., Tekin, R., Kaya, M., Mikrodalga firinda suni yaşlandirilan 6013 alüminyum alaşimin korozyon davranişinin incelenmesi (Investigation of corrosion behavior of 6013 aluminum alloy aged artificially in microwave oven). Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2014. 20(1): p. 25-30.
  • 13. Abo Zeid, E.F., Mechanical and electrochemical characteristics of solutionized AA 6061, AA6013 and AA 5086 aluminum alloys. Journal of Materials Research and Technology, 2019. 8(2): p. 1870-1877.
  • 14. Liu, M., Jiang, T., Wang, J., Liu, Q., Wu, Z., Yu, Y., Skaret, P.C., Roven, H. J., Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation. Transactions of Nonferrous Metals Society of China, 2014. 24: p. 3858-3865.
  • 15. Akyüz, B., Şenaysoy, S., Effect of the aging process on mechanical properties and machinability in AA6013 aluminum alloys. Scientific Research and Essays, 2015. 10(2): p. 17-78.
  • 16. Akyüz, B., Şenaysoy, S., Effect of aging on mechanical properties and machining on aluminum alloys. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2014. 1(1): p. 1-9.
  • 17. Cuniberiti, A., Tolley, A., Castro Riglos, M.V., Giovachini, R., Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Materials Science and Engineering A, 2010. 527: p. 5307-5311.
  • 18. Esmaeili, S., Wang, X., Lloyd, D.J., Poole, W.J., On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metallurgical and Materials Transactions A, 2003. 34: p. 751-763.
  • 19. Murayama, M., Hono, K., Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Materialia, 1999. 47(5): p. 1537-1548.
  • 20. Heat Treating, ASM Handbook, Volume 4 (1991): Heat Treating of Aluminum Alloys.
  • 21. Das, S., Pelcastre, L., Hardell, J., Prakash, B., Effect of static and dynamic ageing on wear and friction behavior of aluminum 6082 alloy. Tribology International, 2013. 60: p. 1-9.
  • 22. Meyveci, A., Karacan, İ., Çalıgülü, U., Durmuş, H., Pin-on-disc chracterization of 2xxx and 6xxx aluminum alloys aged by precipitation age hardening. Journal of Alloys and Compounds, 2010. 491: p. 278-283.
  • 23. Baydoğan, M., Çimenoğlu, H., Kayali E.S., A study on sliding wear of a 7075 aluminum alloy. Wear, 2004. 257: p .852-861.
  • 24. Gavgali, M., Totik, Y., Sadeler, R., The effects of artificial aging on wear properties of AA 6063 alloy. Materials Letters, 2003. 57: p. 3713-3721.
  • 25. Meriç. C., Atik, E., Kaçar, H., Effect of aging on abrasive wear of deformable aluminum alloy AA6351. Metal Science and Heat Treatment, 2004. 46(3-4): p. 110-114.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Malzeme Karekterizasyonu
Bölüm Research Articles
Yazarlar

Mehmet Ayvaz 0000-0002-9671-8679

Yayımlanma Tarihi 15 Ağustos 2021
Gönderilme Tarihi 11 Aralık 2020
Kabul Tarihi 5 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Ayvaz, M. (2021). Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). International Advanced Researches and Engineering Journal, 5(2), 181-187. https://doi.org/10.35860/iarej.839108
AMA Ayvaz M. Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). Int. Adv. Res. Eng. J. Ağustos 2021;5(2):181-187. doi:10.35860/iarej.839108
Chicago Ayvaz, Mehmet. “Determination of the Effect of Artificial Aging Parameters on Dry Sliding Wear Resistance of 6013 Aluminum Alloy (Al-Mg-Si-Cu)”. International Advanced Researches and Engineering Journal 5, sy. 2 (Ağustos 2021): 181-87. https://doi.org/10.35860/iarej.839108.
EndNote Ayvaz M (01 Ağustos 2021) Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). International Advanced Researches and Engineering Journal 5 2 181–187.
IEEE M. Ayvaz, “Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu)”, Int. Adv. Res. Eng. J., c. 5, sy. 2, ss. 181–187, 2021, doi: 10.35860/iarej.839108.
ISNAD Ayvaz, Mehmet. “Determination of the Effect of Artificial Aging Parameters on Dry Sliding Wear Resistance of 6013 Aluminum Alloy (Al-Mg-Si-Cu)”. International Advanced Researches and Engineering Journal 5/2 (Ağustos 2021), 181-187. https://doi.org/10.35860/iarej.839108.
JAMA Ayvaz M. Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). Int. Adv. Res. Eng. J. 2021;5:181–187.
MLA Ayvaz, Mehmet. “Determination of the Effect of Artificial Aging Parameters on Dry Sliding Wear Resistance of 6013 Aluminum Alloy (Al-Mg-Si-Cu)”. International Advanced Researches and Engineering Journal, c. 5, sy. 2, 2021, ss. 181-7, doi:10.35860/iarej.839108.
Vancouver Ayvaz M. Determination of the effect of artificial aging parameters on dry sliding wear resistance of 6013 aluminum alloy (Al-Mg-Si-Cu). Int. Adv. Res. Eng. J. 2021;5(2):181-7.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.