Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 6 Sayı: 1, 26 - 33, 15.04.2022
https://doi.org/10.35860/iarej.997843

Öz

Kaynakça

  • 1. Gandhi, K. Woven textiles: principles, technologies and applications. 2012, England: Woodhead.
  • 2. Khanzada, H., M. Khan and S. Kayani, Cotton based clothing. In: Wang H., Memon H. (eds) Cotton science and processing technology. 2020, Singapore: Springer.
  • 3. Uddin, F. Introductory Chapter: Textile Manufacturing Processes. 2019, Croatia: InTechopen.
  • 4. Clegg, A., W. Yu, J. Tan, C.K. Liu and G. Turk, Learning to dress: Synthesizing human dressing motion via deep reinforcement learning. ACM Transactions on Graphics. 2018. 37(6): p. 1-10.
  • 5. Asayesh, A., M. Talaei and M. Maroufi, The effect of weave pattern on the thermal properties of woven fabrics, International Journal of Clothing Science and Technology, 2018. 30(4): p. 525-535.
  • 6. Hussain, M.A.I., B. Khan, Z. Wang and S. Ding, Woven fabric pattern recognition and classification based on deep convolutional neural networks, Electronics, 2020. 9: p. 1-12
  • 7. Jing, J., M. Xu, P. Li, Q. Li and S. Liu, Automatic classification of woven fabric structure based on texture feature and PNN. Fibers and Polymers, 2014. 15: p. 1092–1098.
  • 8. Cao, J., R. Akkerman, P. Boisse, J. Chen, H. S. Cheng and E. F. de Graaf, Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results, Composites Part A: Applied Science and Manufacturing, 2008. 39(6): p. 1037-1053.
  • 9. Jahan, I. Effect of fabric structure on the mechanical properties of woven fabrics. Advanced Research in Textile Engineering. 2017. 2(2): p. 1-4.
  • 10. Hossain, M.M., E. Datta and S. Rahman, A review on different factors of woven fabrics’ strength prediction. Science Research, 2016. 4(3): p. 88-97.
  • 11. Turukmane, R. and R. Patil, Structural behavior of fabric design on mechanical properties of woven fabrics. Melliand International, 2019. 25(1): p. 83-85.
  • 12. Azeem M., Z. Ahmad, J. Wiener, A. Fraz, H.F. Siddique and A. Havalka, Influence of weave design and yarn types on mechanical and surface properties of woven fabric. Fibres & Textiles in Eastern Europe, 2018. 127(1): p. 42-45.
  • 13. Sardag, S. Investigation of mechanical properties of fabrics woven with tencel/ cotton blend yarns. Textile and Apparel, 2019. 29(2): p. 162-170.
  • 14. Havlova, M. Air permeability and constructional parameters of woven fabrics. Fibres & Textiles in Eastern Europe, 2013. 21-2(98): p. 84-89.
  • 15. Sarıoglu, E. And O. Babaarslan, Porosity and air permeability relationship of denim fabrics produced using core-spun yarns with different filament finenesses for filling. Journal of Engineered Fibers and Fabrics, 2019. 14(1): p. 1-8.
  • 16. Ceven, E.K. and G. Karakan Günaydın, Investigation of some mechanical and air permeability properties of shirting fabrics produced from compact yarns made of natural and synthetic fibres. Uludağ University Journal of The Faculty of Engineering, 2019. 24(2): p. 445-460.
  • 17. Tastan, E., M. Akgun, A. Gurarda, and S. Omeroglu, Investigation of the effect of different structural parameters of cotton woven fabrics on their air permeability. IOP Conference Series: Materials Science and Engineering, 2017. 254: p. 1-4.
  • 18. Ozgen, B. and S. Altas, Evaluation of air permeability of fabrics woven with slub yarns. Tekstil ve Konfeksiyon, 2017. 27(2): p. 126-130.
  • 19. Nielson K.J., Interior textiles: fabrics, application, and historic style. 2007, USA: Wiley&Sons.
  • 20. Ozdemir, H., B.M. Icten and A. Doğan, Experimental investigation of the tensile and impact properties of twill and twill derivative woven fabric reinforced composites. Tekstil ve Konfeksiyon, 2018. 28(4): p. 258-272.
  • 21. Turhan, Y. and R. Eren, Dokunabilirlik sınırıyla ilgili deneysel çalışmaların değerlendirilmesi. Pamukkale Mühendislik Bilimleri Dergisi, 2005. 11(2): p. 205-218.
  • 22. Galuszynski, S., Structure and tightness of woven fabrics. Indian Journal of Textile Research, 1987. 12: p. 71-77.
  • 23. Kim, H.A. And S.J. Kim, Simulation of the weave structural design of synthetic woven fabrics. Fibers and Polymers, 2010. 11(6): p. 905-910.
  • 24. Dobrik Dubrovski, P., Woven fabric engineering. 2010, Croatia: Books on Demand.
  • 25. Ebrahem, H.A.A., Single woven fabric characterization in terms of yarn diameter and average float: Theoretical considerations and test results. Mansoura Engineering Journal, 2009. 43(2): p. 24-32.
  • 26. Sekerden, F., PES/VİS/LYCRA® içerikli atkı elastan dokumalarda çeşitli dokuma faktörlerinin kumaşın fiziksel ve mekanik özelliklerine etkisinin incelenmesi, in: Textile Engineering2009, Çukurova University: Turkey. p.193.
  • 27. Sirkova, B.K., Description of fabric thickness and roughness on the basis of fabric structure parameters, AUTEX Research Journal, 2012. 12(2): p. 40-43.
  • 28. Cherif, C., Textile materials for lightweight constructions: technologies-methods-materials-properties, 2015, Germany: Springer-Verlag Berlin Heidelberg.
  • 29. Mohammad, G.A. Comparative study of air permeability of polyester/metallic blended woven fabrics. Life Science Journal, 2015. 12(6): p. 78-82.
  • 30. Abou-Nassif, G.A., Predicting the tensile and air permeability properties of woven fabrics using artificial neural network and linear regression models. Journal of Textile Science and Engineering, 2015. 5(5): p. 209-215.
  • 31. Ogulata, R.T., Air permeability of woven fabrics. Journal of textile and apparel, technology and Management, 2006. 5(2): p. 1-10.
  • 32. Umair, M., T. Hussain, K. Shaker, Y. Nawab, M. Maqsood and M. Jabbar, Effect of woven fabric structure on the air permeability and moisture management properties. The Journal of The Textile Institute, 2016. 107(5): p. 596-605.
  • 33. Kullman, R.M.H., C.O. Graham and G.F. Ruppenicker, Air permeability of fabrics made from unique and conventional yarns. Textile Research Journal, 1981. 51: p. 781-786.
  • 34. Sekerden F., Effect of fabric weave and weft types on the characteristics of bamboo/cotton woven fabrics. Fibres & Textiles in Eastern Europe, 2011. 19-6 (89): p. 47-52.
  • 35. Fan, J. and L. Hunter, Engineering apparel fabrics and garments. 2009, USA: CRC Press.
  • 36. Kaynak, H.K. and M. Topalbekiroglu, Influence of fabric pattern on the abrasion resistance property of woven fabrics. Fibres & Textiles in Eastern Europe, 2008. 16(1): p. 54-56.
  • 37. Kawabata, S., M. Niwa and H. Kawai, The finite-deformation theory of plain-weave fabrics part- I: the biaxial-deformation theory. Journal of Textile Institution, 1973. 64(1): p. 21-26.
  • 38. Realff, M.L., M.C. Boyce and S. Backer, A micromechanical model of the tensile behavior of woven fabric. Textile Research Journal, 1997. 67(6): p. 445-459.
  • 39. Wu, J. and N. Pan, Grab and strip tensile strengths for woven fabrics: an experimental verification. Textile Research Journal, 2005. 75(11): p. 789–796.
  • 40. Ferdousa, N., S. Rahman, R. Kabir and A.E. Ahmed, A comparative study on tensile strength of different weave structures, International Journal of Scientific Research Engineering & Technology, 2014. 3(9): p. 1307-1313.
  • 41. Fatahi, I.I. and A. Alamdar Yazdi, Assessment of the relationship between air permeability of woven fabrics and its mechanical properties. Fibres & Textiles in Eastern Europe, 2010. 18(83): p. 68-71.
  • 42. Ogulata, R.T. and F.D. Kadem, Prediction of regression analyses of fabric tensile strength of 100% cotton fabrics with yarn dyed in different constructions. Textile and Confection, 2008. 18(3): p. 185-190.
  • 43. Unal, P. and C. Taskın, %100 poliester kumaşlarda dokunun ve sıklıkların kopma mukavemetine etkisi, Tekstil ve Konfeksiyon, 2007. 17(2): p. 115-118.
  • 44. Ozdemir, H. and E. Mert, The effects of fabric structural parameters on the breaking, bursting and impact strengths of diced woven fabrics. Textile and Confection, 2013. 23(2): p. 113-123.
  • 45. Kurtca, E., Atkı ipliği özellikleri, sıklık ve örgü tipinin kumaş mekanik özellikleri üzerine etkisi, in Textile Engineering2001, Istanbul Technical University: Turkey. p. 74.
  • 46. Yılmaz Akyurek, B., Şardonlamanın bi-elastik dokuma kumaşlarda mekanik özellikler üzerine etkisinin deneysel belirlenmesi. Tekstil ve Mühendis, 2016. 23(101): p. 1-11.

Effect of pattern on air permeability, mechanical resistance and thickness of wovens

Yıl 2022, Cilt: 6 Sayı: 1, 26 - 33, 15.04.2022
https://doi.org/10.35860/iarej.997843

Öz

This study examines the effect of different patterns on aesthetic properties, air permeability characteristics and mechanical performance of woven fabrics constructed with 100% cotton ring spun yarns. Weaving process were proceeded by using 28/2 Ne combed warp and 32/2 Ne carded weft yarns with identical manufacturing parameters. Fabrics with 5 dissimilar patterns were obtained and 5 measurements were done for each pattern type. Average yarn floats, crimp percentage and yarn settings were calculated and fabric thickness, abrasion resistance, air permeability and bi-directionally tensile strengths of these fabrics were tested. Test results showed that increasing the numbers of floating yarns made fabric more air-permeable but less resistant against to applied mechanical forces. Besides, it caused to increase in fabric thickness. All test results were statistically evaluated by ANOVA and Duncan comparison tests and it was seen that the effect of weave pattern was at significance level of p<0.001. Air permeability characteristics of wovens can be easily and inexpensively arranged by pattern effect. In order to satisfy mechanical and functional specifications, further studies should be performed on panama woven structures with different yarn floats.

Kaynakça

  • 1. Gandhi, K. Woven textiles: principles, technologies and applications. 2012, England: Woodhead.
  • 2. Khanzada, H., M. Khan and S. Kayani, Cotton based clothing. In: Wang H., Memon H. (eds) Cotton science and processing technology. 2020, Singapore: Springer.
  • 3. Uddin, F. Introductory Chapter: Textile Manufacturing Processes. 2019, Croatia: InTechopen.
  • 4. Clegg, A., W. Yu, J. Tan, C.K. Liu and G. Turk, Learning to dress: Synthesizing human dressing motion via deep reinforcement learning. ACM Transactions on Graphics. 2018. 37(6): p. 1-10.
  • 5. Asayesh, A., M. Talaei and M. Maroufi, The effect of weave pattern on the thermal properties of woven fabrics, International Journal of Clothing Science and Technology, 2018. 30(4): p. 525-535.
  • 6. Hussain, M.A.I., B. Khan, Z. Wang and S. Ding, Woven fabric pattern recognition and classification based on deep convolutional neural networks, Electronics, 2020. 9: p. 1-12
  • 7. Jing, J., M. Xu, P. Li, Q. Li and S. Liu, Automatic classification of woven fabric structure based on texture feature and PNN. Fibers and Polymers, 2014. 15: p. 1092–1098.
  • 8. Cao, J., R. Akkerman, P. Boisse, J. Chen, H. S. Cheng and E. F. de Graaf, Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results, Composites Part A: Applied Science and Manufacturing, 2008. 39(6): p. 1037-1053.
  • 9. Jahan, I. Effect of fabric structure on the mechanical properties of woven fabrics. Advanced Research in Textile Engineering. 2017. 2(2): p. 1-4.
  • 10. Hossain, M.M., E. Datta and S. Rahman, A review on different factors of woven fabrics’ strength prediction. Science Research, 2016. 4(3): p. 88-97.
  • 11. Turukmane, R. and R. Patil, Structural behavior of fabric design on mechanical properties of woven fabrics. Melliand International, 2019. 25(1): p. 83-85.
  • 12. Azeem M., Z. Ahmad, J. Wiener, A. Fraz, H.F. Siddique and A. Havalka, Influence of weave design and yarn types on mechanical and surface properties of woven fabric. Fibres & Textiles in Eastern Europe, 2018. 127(1): p. 42-45.
  • 13. Sardag, S. Investigation of mechanical properties of fabrics woven with tencel/ cotton blend yarns. Textile and Apparel, 2019. 29(2): p. 162-170.
  • 14. Havlova, M. Air permeability and constructional parameters of woven fabrics. Fibres & Textiles in Eastern Europe, 2013. 21-2(98): p. 84-89.
  • 15. Sarıoglu, E. And O. Babaarslan, Porosity and air permeability relationship of denim fabrics produced using core-spun yarns with different filament finenesses for filling. Journal of Engineered Fibers and Fabrics, 2019. 14(1): p. 1-8.
  • 16. Ceven, E.K. and G. Karakan Günaydın, Investigation of some mechanical and air permeability properties of shirting fabrics produced from compact yarns made of natural and synthetic fibres. Uludağ University Journal of The Faculty of Engineering, 2019. 24(2): p. 445-460.
  • 17. Tastan, E., M. Akgun, A. Gurarda, and S. Omeroglu, Investigation of the effect of different structural parameters of cotton woven fabrics on their air permeability. IOP Conference Series: Materials Science and Engineering, 2017. 254: p. 1-4.
  • 18. Ozgen, B. and S. Altas, Evaluation of air permeability of fabrics woven with slub yarns. Tekstil ve Konfeksiyon, 2017. 27(2): p. 126-130.
  • 19. Nielson K.J., Interior textiles: fabrics, application, and historic style. 2007, USA: Wiley&Sons.
  • 20. Ozdemir, H., B.M. Icten and A. Doğan, Experimental investigation of the tensile and impact properties of twill and twill derivative woven fabric reinforced composites. Tekstil ve Konfeksiyon, 2018. 28(4): p. 258-272.
  • 21. Turhan, Y. and R. Eren, Dokunabilirlik sınırıyla ilgili deneysel çalışmaların değerlendirilmesi. Pamukkale Mühendislik Bilimleri Dergisi, 2005. 11(2): p. 205-218.
  • 22. Galuszynski, S., Structure and tightness of woven fabrics. Indian Journal of Textile Research, 1987. 12: p. 71-77.
  • 23. Kim, H.A. And S.J. Kim, Simulation of the weave structural design of synthetic woven fabrics. Fibers and Polymers, 2010. 11(6): p. 905-910.
  • 24. Dobrik Dubrovski, P., Woven fabric engineering. 2010, Croatia: Books on Demand.
  • 25. Ebrahem, H.A.A., Single woven fabric characterization in terms of yarn diameter and average float: Theoretical considerations and test results. Mansoura Engineering Journal, 2009. 43(2): p. 24-32.
  • 26. Sekerden, F., PES/VİS/LYCRA® içerikli atkı elastan dokumalarda çeşitli dokuma faktörlerinin kumaşın fiziksel ve mekanik özelliklerine etkisinin incelenmesi, in: Textile Engineering2009, Çukurova University: Turkey. p.193.
  • 27. Sirkova, B.K., Description of fabric thickness and roughness on the basis of fabric structure parameters, AUTEX Research Journal, 2012. 12(2): p. 40-43.
  • 28. Cherif, C., Textile materials for lightweight constructions: technologies-methods-materials-properties, 2015, Germany: Springer-Verlag Berlin Heidelberg.
  • 29. Mohammad, G.A. Comparative study of air permeability of polyester/metallic blended woven fabrics. Life Science Journal, 2015. 12(6): p. 78-82.
  • 30. Abou-Nassif, G.A., Predicting the tensile and air permeability properties of woven fabrics using artificial neural network and linear regression models. Journal of Textile Science and Engineering, 2015. 5(5): p. 209-215.
  • 31. Ogulata, R.T., Air permeability of woven fabrics. Journal of textile and apparel, technology and Management, 2006. 5(2): p. 1-10.
  • 32. Umair, M., T. Hussain, K. Shaker, Y. Nawab, M. Maqsood and M. Jabbar, Effect of woven fabric structure on the air permeability and moisture management properties. The Journal of The Textile Institute, 2016. 107(5): p. 596-605.
  • 33. Kullman, R.M.H., C.O. Graham and G.F. Ruppenicker, Air permeability of fabrics made from unique and conventional yarns. Textile Research Journal, 1981. 51: p. 781-786.
  • 34. Sekerden F., Effect of fabric weave and weft types on the characteristics of bamboo/cotton woven fabrics. Fibres & Textiles in Eastern Europe, 2011. 19-6 (89): p. 47-52.
  • 35. Fan, J. and L. Hunter, Engineering apparel fabrics and garments. 2009, USA: CRC Press.
  • 36. Kaynak, H.K. and M. Topalbekiroglu, Influence of fabric pattern on the abrasion resistance property of woven fabrics. Fibres & Textiles in Eastern Europe, 2008. 16(1): p. 54-56.
  • 37. Kawabata, S., M. Niwa and H. Kawai, The finite-deformation theory of plain-weave fabrics part- I: the biaxial-deformation theory. Journal of Textile Institution, 1973. 64(1): p. 21-26.
  • 38. Realff, M.L., M.C. Boyce and S. Backer, A micromechanical model of the tensile behavior of woven fabric. Textile Research Journal, 1997. 67(6): p. 445-459.
  • 39. Wu, J. and N. Pan, Grab and strip tensile strengths for woven fabrics: an experimental verification. Textile Research Journal, 2005. 75(11): p. 789–796.
  • 40. Ferdousa, N., S. Rahman, R. Kabir and A.E. Ahmed, A comparative study on tensile strength of different weave structures, International Journal of Scientific Research Engineering & Technology, 2014. 3(9): p. 1307-1313.
  • 41. Fatahi, I.I. and A. Alamdar Yazdi, Assessment of the relationship between air permeability of woven fabrics and its mechanical properties. Fibres & Textiles in Eastern Europe, 2010. 18(83): p. 68-71.
  • 42. Ogulata, R.T. and F.D. Kadem, Prediction of regression analyses of fabric tensile strength of 100% cotton fabrics with yarn dyed in different constructions. Textile and Confection, 2008. 18(3): p. 185-190.
  • 43. Unal, P. and C. Taskın, %100 poliester kumaşlarda dokunun ve sıklıkların kopma mukavemetine etkisi, Tekstil ve Konfeksiyon, 2007. 17(2): p. 115-118.
  • 44. Ozdemir, H. and E. Mert, The effects of fabric structural parameters on the breaking, bursting and impact strengths of diced woven fabrics. Textile and Confection, 2013. 23(2): p. 113-123.
  • 45. Kurtca, E., Atkı ipliği özellikleri, sıklık ve örgü tipinin kumaş mekanik özellikleri üzerine etkisi, in Textile Engineering2001, Istanbul Technical University: Turkey. p. 74.
  • 46. Yılmaz Akyurek, B., Şardonlamanın bi-elastik dokuma kumaşlarda mekanik özellikler üzerine etkisinin deneysel belirlenmesi. Tekstil ve Mühendis, 2016. 23(101): p. 1-11.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler
Bölüm Research Articles
Yazarlar

Hayriye Hale Aygün 0000-0002-2812-8079

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 20 Eylül 2021
Kabul Tarihi 24 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster

APA Aygün, H. H. (2022). Effect of pattern on air permeability, mechanical resistance and thickness of wovens. International Advanced Researches and Engineering Journal, 6(1), 26-33. https://doi.org/10.35860/iarej.997843
AMA Aygün HH. Effect of pattern on air permeability, mechanical resistance and thickness of wovens. Int. Adv. Res. Eng. J. Nisan 2022;6(1):26-33. doi:10.35860/iarej.997843
Chicago Aygün, Hayriye Hale. “Effect of Pattern on Air Permeability, Mechanical Resistance and Thickness of Wovens”. International Advanced Researches and Engineering Journal 6, sy. 1 (Nisan 2022): 26-33. https://doi.org/10.35860/iarej.997843.
EndNote Aygün HH (01 Nisan 2022) Effect of pattern on air permeability, mechanical resistance and thickness of wovens. International Advanced Researches and Engineering Journal 6 1 26–33.
IEEE H. H. Aygün, “Effect of pattern on air permeability, mechanical resistance and thickness of wovens”, Int. Adv. Res. Eng. J., c. 6, sy. 1, ss. 26–33, 2022, doi: 10.35860/iarej.997843.
ISNAD Aygün, Hayriye Hale. “Effect of Pattern on Air Permeability, Mechanical Resistance and Thickness of Wovens”. International Advanced Researches and Engineering Journal 6/1 (Nisan 2022), 26-33. https://doi.org/10.35860/iarej.997843.
JAMA Aygün HH. Effect of pattern on air permeability, mechanical resistance and thickness of wovens. Int. Adv. Res. Eng. J. 2022;6:26–33.
MLA Aygün, Hayriye Hale. “Effect of Pattern on Air Permeability, Mechanical Resistance and Thickness of Wovens”. International Advanced Researches and Engineering Journal, c. 6, sy. 1, 2022, ss. 26-33, doi:10.35860/iarej.997843.
Vancouver Aygün HH. Effect of pattern on air permeability, mechanical resistance and thickness of wovens. Int. Adv. Res. Eng. J. 2022;6(1):26-33.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.