Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 1, 35 - 40, 15.04.2023
https://doi.org/10.35860/iarej.1188175

Öz

Kaynakça

  • 1. Bi, Z. M., and L. Wang, Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 2010. 26(5): p. 403-413.
  • 2. Önçağ A. Ç, Ç. Tekcan and H. Özden, Assessment and application of modeling mechanic parts with reverse engineering. Pamukkale University Journal of Engineering Sciences, 2018. 24(1): p. 42-49.
  • 3. Buonamici F, M. Carfagni, R. Furferi, L. Governi, A. Lapini, and Y. Volpe, Reverse engineering of mechanical parts: A template-based approach. Journal of Computational Design and Engineering, 2018. 5(2): p. 145-159.
  • 4. Dongaonkar A. V., and R. M. Metkar, Reconstruction of damaged parts by integration reverse engineering (RE) and rapid prototyping (RP). 3D Printing and Additive Manufacturing Technologies, 2019. p. 159-171.
  • 5. Çelik, İ., F. Karakoç, M. C. Çakır,and A. Duysak, Hızlı prototipleme teknolojileri ve uygulama alanları. Journal of Science and Technology of Dumlupınar University, 2013. (031): p. 53-70.
  • 6. Haleem A, M. Javaid, A. Goyal, and T. Khanam, Redesign of Car Body by Reverse Engineering Technique using Steinbichler 3D Scanner and Projet 3D Printer. Journal of Industrial Integration and Management, 2022. 7(02): p. 171-182.
  • 7. Çelebioğlu K, and A. Kaplan, Development and Implementation of a Methodology for Reverse Engineering Design of Francis Turbine Runners. Pamukkale University Journal of Engineering Sciences, 2019.25(4): p. 430-439.
  • 8. Mian, S. H., M. A. Mannan, and A. M. Al-Ahmari, Multi-sensor integrated system for reverse engineering. Procedia Engineering, 2013. 64: p. 518-527.
  • 9. Mejia, D., O. Ruiz-Salguero, J. R. Sánchez, J. Posada, A. Moreno, and C. A. Cadavid, Hybrid geometry/topology-based mesh segmentation for reverse engineering. Computers & Graphics, 2018. 73: p. 47-58.
  • 10. Verim, Ö., and M. Yumurtacı, Application of reverse engineering approach on a damaged mechanical part. International Advanced Researches and Engineering Journal, 2020. 4(1): p. 21-28.
  • 11. Buonamici, F., M. Carfagni, R. Furferi, L. Governi, A. Lapini, and Y. Volpe, Reverse engineering modeling methods and tools: a survey. Computer-Aided Design and Applications, 2018. 15(3): p. 443-464.
  • 12. Günpınar, E., Tersine mühendislik yoluyla üç boyutlu geometrik modelin oluşturulmasi ve gemi yapim endüstrisindeki bazi uygulamalari. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 2016. 18(54): p. 624-639.
  • 13. Benkő, P., R. R. Martin, and T. Várady, Algorithms for reverse engineering boundary representation models. Computer-Aided Design, 2001. 33(11): p. 839-851.
  • 14. Şahin, İ., T. Şahin, and H. Gökçe, Hasarlı dişlilerin tersine mühendislik yaklaşımıyla yeniden oluşturulması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2017. 5(2): p. 485-495.
  • 15. Dudek P, and A. Rapacz-Kmita, Rapid prototyping: Technologies, materials and advances. Archives of Metallurgy and Materials, 2016. 61: p. 891–895.
  • 16. Campbell, I., D. Bourell, and I. Gibson, Additive manufacturing: rapid prototyping comes of age. Rapid Prototyping Journal, 2012. 18(4): p. 255-258.
  • 17. Gibson, I., D. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2014, 498 Springer, New York, 2.
  • 18. Bellini, A., and S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 2003. 9(4): p. 252-264.
  • 19. Vukasovic, T., J. F. Vivanco, D. Celentano, and C. García-Herrera, Characterization of the mechanical response of thermoplastic parts fabricated with 3D printing. The International Journal of Advanced Manufacturing Technology, 2019. 104: p. 4207-4218.
  • 20. Chua, C. K., K. F. Leong, and C. S. Lim, Rapid prototyping: Principles and applications, third edition. 2010, World Scientific Publishing Company.
  • 21. Günay, M., S. Gündüz, H. Yılmaz, N. Yaşar, and R. Kaçar, PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu. Politeknik Dergisi, 2020., 23(1): p. 73-79.
  • 22. Maguluri N, G. Suresh, and K. V. Rao, Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method. Journal of Thermoplastic Composite Materials, 2021.
  • 23. Dúbravčík, M., and Š. Kender, Application of reverse engineering techniques in mechanics system services. Procedia Engineering, 2012. 48: p. 96-104.
  • 24. Prakash, K. S., T. Nancharaih, and V. S. Rao, Additive manufacturing techniques in manufacturing-an overview. Materials Today: Proceedings, 2018. 5(2): p. 3873-3882.
  • 25. Wu, H., W. P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, and J. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020. 111: p. 100638.
  • 26. Yakout, M., M. A. Elbestawi, and S. C. Veldhuis, A review of metal additive manufacturing technologies. Solid State Phenomena, 2018. 278: p. 10-14.
  • 27. Urhal, P., A. Weightman, C. Diver, and P. Bartolo, Robot assisted additive manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 2019. 59: p. 335-345.
  • 28. Bartol, K., D. Bojanić, T. Petković, and T. Pribanić, A review of body measurement using 3D scanning. IEEE Access, 2021. 9: p. 67281-67301.
  • 29. Javaid, M., A. Haleem, R. P. Singh, and R. Suman, Industrial perspectives of 3D scanning: features, roles and it's analytical applications. Sensors International, 2021. 2: p. 100114.

Application of reverse engineering method on agricultural machinery parts

Yıl 2023, Cilt: 7 Sayı: 1, 35 - 40, 15.04.2023
https://doi.org/10.35860/iarej.1188175

Öz

Reverse engineering, the production of parts without CAD data, the reproduction of damaged parts, the creation and production of new parts by making innovations on parts with CAD data is a significant area. Considering the field of mechanical engineering, the surface and geometric properties of an existing part can be reconstructed by reverse engineering application. Within the scope of this study, the possibilities offered by reverse engineering are used to create a three-dimensional (3D) model of an agricultural part and the production of its prototype. The agricultural part was scanned in 3D with the help of a scanner, and a mesh model was created. Afterward, the solid model of the part was created, and the prototype was produced with the help of a 3D printer. The deviations of geometric dimensions between the mesh and solid models were analysed, and their convergence levels were determined. At the end of the study, the geometric values between the solid model and the prototype model were compared, and the deviations from the actual value were determined. Thus, it has been shown that both surface modelling studies and solid model designs can be integrated with reverse engineering software.

Kaynakça

  • 1. Bi, Z. M., and L. Wang, Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 2010. 26(5): p. 403-413.
  • 2. Önçağ A. Ç, Ç. Tekcan and H. Özden, Assessment and application of modeling mechanic parts with reverse engineering. Pamukkale University Journal of Engineering Sciences, 2018. 24(1): p. 42-49.
  • 3. Buonamici F, M. Carfagni, R. Furferi, L. Governi, A. Lapini, and Y. Volpe, Reverse engineering of mechanical parts: A template-based approach. Journal of Computational Design and Engineering, 2018. 5(2): p. 145-159.
  • 4. Dongaonkar A. V., and R. M. Metkar, Reconstruction of damaged parts by integration reverse engineering (RE) and rapid prototyping (RP). 3D Printing and Additive Manufacturing Technologies, 2019. p. 159-171.
  • 5. Çelik, İ., F. Karakoç, M. C. Çakır,and A. Duysak, Hızlı prototipleme teknolojileri ve uygulama alanları. Journal of Science and Technology of Dumlupınar University, 2013. (031): p. 53-70.
  • 6. Haleem A, M. Javaid, A. Goyal, and T. Khanam, Redesign of Car Body by Reverse Engineering Technique using Steinbichler 3D Scanner and Projet 3D Printer. Journal of Industrial Integration and Management, 2022. 7(02): p. 171-182.
  • 7. Çelebioğlu K, and A. Kaplan, Development and Implementation of a Methodology for Reverse Engineering Design of Francis Turbine Runners. Pamukkale University Journal of Engineering Sciences, 2019.25(4): p. 430-439.
  • 8. Mian, S. H., M. A. Mannan, and A. M. Al-Ahmari, Multi-sensor integrated system for reverse engineering. Procedia Engineering, 2013. 64: p. 518-527.
  • 9. Mejia, D., O. Ruiz-Salguero, J. R. Sánchez, J. Posada, A. Moreno, and C. A. Cadavid, Hybrid geometry/topology-based mesh segmentation for reverse engineering. Computers & Graphics, 2018. 73: p. 47-58.
  • 10. Verim, Ö., and M. Yumurtacı, Application of reverse engineering approach on a damaged mechanical part. International Advanced Researches and Engineering Journal, 2020. 4(1): p. 21-28.
  • 11. Buonamici, F., M. Carfagni, R. Furferi, L. Governi, A. Lapini, and Y. Volpe, Reverse engineering modeling methods and tools: a survey. Computer-Aided Design and Applications, 2018. 15(3): p. 443-464.
  • 12. Günpınar, E., Tersine mühendislik yoluyla üç boyutlu geometrik modelin oluşturulmasi ve gemi yapim endüstrisindeki bazi uygulamalari. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 2016. 18(54): p. 624-639.
  • 13. Benkő, P., R. R. Martin, and T. Várady, Algorithms for reverse engineering boundary representation models. Computer-Aided Design, 2001. 33(11): p. 839-851.
  • 14. Şahin, İ., T. Şahin, and H. Gökçe, Hasarlı dişlilerin tersine mühendislik yaklaşımıyla yeniden oluşturulması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2017. 5(2): p. 485-495.
  • 15. Dudek P, and A. Rapacz-Kmita, Rapid prototyping: Technologies, materials and advances. Archives of Metallurgy and Materials, 2016. 61: p. 891–895.
  • 16. Campbell, I., D. Bourell, and I. Gibson, Additive manufacturing: rapid prototyping comes of age. Rapid Prototyping Journal, 2012. 18(4): p. 255-258.
  • 17. Gibson, I., D. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2014, 498 Springer, New York, 2.
  • 18. Bellini, A., and S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 2003. 9(4): p. 252-264.
  • 19. Vukasovic, T., J. F. Vivanco, D. Celentano, and C. García-Herrera, Characterization of the mechanical response of thermoplastic parts fabricated with 3D printing. The International Journal of Advanced Manufacturing Technology, 2019. 104: p. 4207-4218.
  • 20. Chua, C. K., K. F. Leong, and C. S. Lim, Rapid prototyping: Principles and applications, third edition. 2010, World Scientific Publishing Company.
  • 21. Günay, M., S. Gündüz, H. Yılmaz, N. Yaşar, and R. Kaçar, PLA esaslı numunelerde çekme dayanımı için 3D baskı işlem parametrelerinin optimizasyonu. Politeknik Dergisi, 2020., 23(1): p. 73-79.
  • 22. Maguluri N, G. Suresh, and K. V. Rao, Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method. Journal of Thermoplastic Composite Materials, 2021.
  • 23. Dúbravčík, M., and Š. Kender, Application of reverse engineering techniques in mechanics system services. Procedia Engineering, 2012. 48: p. 96-104.
  • 24. Prakash, K. S., T. Nancharaih, and V. S. Rao, Additive manufacturing techniques in manufacturing-an overview. Materials Today: Proceedings, 2018. 5(2): p. 3873-3882.
  • 25. Wu, H., W. P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, and J. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020. 111: p. 100638.
  • 26. Yakout, M., M. A. Elbestawi, and S. C. Veldhuis, A review of metal additive manufacturing technologies. Solid State Phenomena, 2018. 278: p. 10-14.
  • 27. Urhal, P., A. Weightman, C. Diver, and P. Bartolo, Robot assisted additive manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 2019. 59: p. 335-345.
  • 28. Bartol, K., D. Bojanić, T. Petković, and T. Pribanić, A review of body measurement using 3D scanning. IEEE Access, 2021. 9: p. 67281-67301.
  • 29. Javaid, M., A. Haleem, R. P. Singh, and R. Suman, Industrial perspectives of 3D scanning: features, roles and it's analytical applications. Sensors International, 2021. 2: p. 100114.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Research Articles
Yazarlar

Özgür Verim 0000-0002-1575-2630

Ozan Sen 0000-0002-9913-664X

Erken Görünüm Tarihi 1 Mayıs 2023
Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 13 Ekim 2022
Kabul Tarihi 25 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 1

Kaynak Göster

APA Verim, Ö., & Sen, O. (2023). Application of reverse engineering method on agricultural machinery parts. International Advanced Researches and Engineering Journal, 7(1), 35-40. https://doi.org/10.35860/iarej.1188175
AMA Verim Ö, Sen O. Application of reverse engineering method on agricultural machinery parts. Int. Adv. Res. Eng. J. Nisan 2023;7(1):35-40. doi:10.35860/iarej.1188175
Chicago Verim, Özgür, ve Ozan Sen. “Application of Reverse Engineering Method on Agricultural Machinery Parts”. International Advanced Researches and Engineering Journal 7, sy. 1 (Nisan 2023): 35-40. https://doi.org/10.35860/iarej.1188175.
EndNote Verim Ö, Sen O (01 Nisan 2023) Application of reverse engineering method on agricultural machinery parts. International Advanced Researches and Engineering Journal 7 1 35–40.
IEEE Ö. Verim ve O. Sen, “Application of reverse engineering method on agricultural machinery parts”, Int. Adv. Res. Eng. J., c. 7, sy. 1, ss. 35–40, 2023, doi: 10.35860/iarej.1188175.
ISNAD Verim, Özgür - Sen, Ozan. “Application of Reverse Engineering Method on Agricultural Machinery Parts”. International Advanced Researches and Engineering Journal 7/1 (Nisan 2023), 35-40. https://doi.org/10.35860/iarej.1188175.
JAMA Verim Ö, Sen O. Application of reverse engineering method on agricultural machinery parts. Int. Adv. Res. Eng. J. 2023;7:35–40.
MLA Verim, Özgür ve Ozan Sen. “Application of Reverse Engineering Method on Agricultural Machinery Parts”. International Advanced Researches and Engineering Journal, c. 7, sy. 1, 2023, ss. 35-40, doi:10.35860/iarej.1188175.
Vancouver Verim Ö, Sen O. Application of reverse engineering method on agricultural machinery parts. Int. Adv. Res. Eng. J. 2023;7(1):35-40.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.