This study investigates the internal and external (spillover) characteristics of the volatility of the Turkish and Russian stock market indices. To this end, generalized autoregressive conditional heteroskedasticity models that are classified as short memory (GARCH, EGARCH, GJR-GARCH, APARCH) and long memory (FIGARCH, FIEGARCH, FIAPARCH, HYGARCH) considering adaptive structure (Fourier series), and the rolling Hong causality methods are used. The analysis spans the years 2003–2020, revealing that the asymmetric power autoregressive conditional heteroskedasticity model is the most appropriate method in terms of both stock indices and leverage and long memory effects are evident in the volatility series. Bidirectional volatility spillovers between Turkish and Russian stock market indices are also evident in all time horizons. Investors can use volatility results for stock valuation, risk management, portfolio diversification, and hedging, and policymakers can consider the volatility results to evaluate the fragility of financial markets.
Al-Hajieh, H. (2017). Evaluated the success of Fractional Integrated GARCH models on prediction stock market return volatility in Gulf Arab stock markets. International Journal of Economics and Finance, 9(7), 200-213. google scholar
Altuntas Taspunar, S. & Colak, F. D. (2015). Modelling and estimating volatility with ARCH Models At ISE-100 Index. İstanbul Management Journal, 26 (79), 208-223. google scholar
Andersen, T. G. & Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. The Journal Of Finance, 52(3), 975-1005. google scholar
Ay, G. & Gün, M. (2020). Volatility modelling in Borsa Istanbul Stock Market: An application on BIST Banking Index. Business & Management Studies: An International Journal, 8(5), 3795-3814. https://doi. org/10.15295/bmij.v8i5.1547 google scholar
Baillie, R., Bollerslev, T. & Mikkelsen, H. O. (1996). Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity. Journal Of Econometrics, 74(1), 3-30. https://doi.org/10.1016/S0304-4076(95)01749-6 google scholar
Baillie, R. T. & Morana, C. (2009). Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach. Journal of Economic Dynamics & Control, 33, 1577-1592. google scholar
Bayramoglu, M. F. & Abasız, T. (2017). The analysis of volatility spillover effect between emerging market indices. Journal of Accounting and Finance, 183-199. google scholar
Beirne,J., Caporale, G. M., Schulze-Ghattas, M. & Spagnolo, N. (2010). Global and regional spillovers in emerging stock markets: A multivariate GARCH-in-mean analysis. Emerging Markets Review, 11 (3), 250-260. https://doi.org/10.1016/j.ememar.2010.05.002 google scholar
Bentes, S. R. (2014). Measuring persistence in stock market volatility using the FIGARCH approach. Physi-ca A: Statistical Mechanics and its Applications, 408, 190-197. google scholar
Bentes, S. R., Menezes, R. & Mendes, D. (2008). Long Memory and Volatility Clustering: Is the Empirical Evidence Consistent Across Stock Markets ? Physica A, 387: 3826-3830. google scholar
Berberoglu, M. (2020). The investigation of volatility spillover effect between stock markets of Türkiye, Italy, Greece and Russia. Business & Management Studies: An international Journal, 8(2), 1576-1598. https://doi.org/10.15295/bmij.v8i2.1475 google scholar
Berger, D., Chaboud, A., & Hjalmarsson, E. (2009). What drives volatility persistence in the foreign exchan-ge market? Journal of Financial Economics, 94(2), 192-213. google scholar
Bhowmik, D .(2013). Stock Market Volatility: An Evaluation. International Journal of Scientific and Rese-arch Publications, 3 (10), 1-17. google scholar
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 google scholar
Bollerslev, T., Engle, R. F. & Nelson, D. B. (1994). ARCH models. Handbook of Econometrics, 4, 29593038. google scholar
Bollerslev, T. & Mikkelsen, H. (1996). Modeling and pricing long memory in stock market volatility. Jour-nal of Econometrics, 73(1), 151-184. https://doi.org/10.1016/0304-4076(95)01736-4 google scholar
Bose, S. (2007). Understanding the Volatility Characteristics and Transmisson Effect in the Indian Stock Index and Index Futures Market, ICRA Bulletin- Money & Finance, 139-162 google scholar
Brooks, R. (2007). Power ARCH modelling of the volatility of emerging equity markets. Emerging Markets Review, 8, 124-133. google scholar
Brooks, C. (2008). Introductory Econometrics for Finance. Second Edition. Cambridge: Cambridge Uni-versity Press. google scholar
Büberkökü, Ö. & Kızıldere, C. (2017). Examining the properties of BIST100 Index return volatility. V. Anadolu International Conference in Economics, Eskişehir/Türkiye. google scholar
Caglı, E. Ç., Mandacı, P. E. & Kahyaoğlu, H. (2011). Volatility shifts and persistence in variance: Evidence from the sector indices of Istanbul Stock Exchange. International Journal of Economic Sciences and Applied Research, 4(3), 119-140. google scholar
Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics, 31(3), 281-318. google scholar
Carroll, R. & Kearney, C. (2009), “GARCH modeling of stock market volatility”, Gregoriou, G. N. (Ed), Stock Market Volatility, Chapman & Hall/CRC, pp. 71-90. google scholar
Celik, İ., Özdemir, A. & Gülbahar Demir, S. (2018). Return and volatility spillover between Islamic stock indices: An application of multivarite VAR-EGARCH on developed and emerging markets. Bulletin of Accounting and Finance Reviews, 1(2), 89-100. google scholar
Çevik, E. İ. (2012). The testing of effıcient market hypothesis ın the Istanbul stock exchange by using long memory models: A sector-specific analysis. Journal of Yaşar University, 7(26), 4437-4454. google scholar
Çevik, E. İ. &Topaloglu, G. (2014). Long memory and structural breaks on volatility: Evidence from Borsa Istanbul. Balkan Journal of Social Sciences, 3(6), 40-55. google scholar
Chang, C-L., McALeer, M. & Tansuchat, R. (2012). Modelling long memory volatility in agricultu-ral commodity futures returns. Annals of Financial Economics, 7(2),1-27. https://doi.org/10.1142/ S2010495212500108 google scholar
Chikli, W., Aloui, C. & Nguyen, D. K. (2012). Asymmetric Effects and Long Memory in Dynamic Volatility Relationships Between Stock Returns and Exchange Rates. Int. Fin. Markets Inst. and Money. 22, 738757 google scholar
Chong, C. W., Ahmad, M. I., & Abdullah, M. Y. (1999). Performance of GARCH models in forecasting stock market volatility. Journal of forecasting, 18(5), 333-343. https://doi.org/10.1002/(SICI)1099-131X(199909)18:5<333::AID-FOR742>3.0.CO;2-K google scholar
Christensen, B. J., Nielsen, M. O. & Zhu, J. (2010). Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model. Journal of Empirical Finance. 17, 460-47 google scholar
Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models and a new model. Journal of Business & Economic Statistics, 22(1), 16-29. google scholar
Dedi, L. & Yavas, B.F. (2016). Return and volatility spillovers in equity markets: An investigation using various GARCH methodologies. Cogent Economics& Finance, 4, 1-18. https://doi.org/10.1080/233220 39.2016.1266788 google scholar
Ding, Z., Granger, C.W. J. & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D google scholar
Engle, R. F., Ito, T. & Lın, W-L. (1990). Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Econometrica, 58(3), 525-542. https://doi.org/10.2307/2938189 google scholar
Engle, R. F. & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x google scholar
Ewing, T. B. & Malik, F. (2017). Modelling asymmetric volatility in oil prices under structural breaks. Energy Economics, 63, 227-233. https://doi.org/10.1016/j.eneco.2017.03.001 google scholar
French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of financial Economics, 19(1), 3-29. google scholar
Gaye Gencer, H., & Demiralay, S. (2016). Volatility modeling and value-at-risk (var) forecasting of emerging stock markets in the presence of long memory, asymmetry, and skewed heavy tails. Emerging Markets Finance and Trade, 52(3), 639-657. google scholar
Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993). On the Relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779- 1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x google scholar
Gökbulut, R. İ. (2017). An empirical analysis of volatility transmission between BIST and international stock markets. The International Journal of Economic and Social Research, 13(1), 141-159. google scholar
Günay, S. (2014). Long memory property and structural breaks in volatility: Evidence from Türkiye and Brazil. International Journal of Economics and Finance, 6(12), 119. google scholar
Gürsoy, S. & Eroglu, Ö. (2016). Return and volatility spillovers among the share markets of emerging eco-nomies: an analysis from 2006 to 2015 years. Mehmet Akif Ersoy University Journal of Economics and Administrative Sciences, 3(5), 16-33 google scholar
Hong, Y. (2001). A test for volatility spillover with application to exchange rates. Journal of Economet-rics, 103 (1-2), 183-224. https://doi.org/10.1016/S0304-4076(01)00043-4 google scholar
Kalotychou, E., & Staikouras, K. S. (2009), “An overview of the issues surrounding stock market volatility”, Gregoriou, G. N. (Ed), Stock Market Volatility, Plattsburgh/New York: A Chapman & Hall /CRC Finance, pp. 3-29. google scholar
Karabacak, M., Mecik, O. & Genc, E. (2014). Estimating the volatility of BIST 100 Index return and gold return index with conditional heteroscedasticity models. International Journal of Alanya Faculty of Bu-siness, 6(1), 79-90. google scholar
Koutmos, G. & Booth, G.G. (1995). Asymmetric volatility transmission in international stock markets. Jour-nal of International Money and Finance, 14(6), 747-762. google scholar
Koy, A. & Ekim. (2016). Modelling the volatility of Istanbul Stock Exchange Sector Indexes. E- Journal of the Faculty of Economic and Administrative Sciences, 5(2), 1-23. google scholar
Kula, V. & Baykut, E. (2017). Volatility in emerging stock markets: Measuring and comparing volatility structure of BRIC and BIST. V. Anadolu International Conference in Economics, Eskişehir/Türkiye. google scholar
Kutlar, A. & Torun, P. (2012). Selecting An appropriate Generalized Conditional Heteroscedastic Model for the Daily ISE 100 Index Returns. Third International Economy Conference, Çeşme/İzmir/Türkiye, pp. 1-24. google scholar
Kutlu, M. & Karakaya, A. (2020). Return and volatility spillover effects between the Türkiye and the Russia stock market. Journal of Economic and Administrative Sciences, 37(4), 456-470. https://doi.org/10.1108/ JEAS-10-2019-0114 google scholar
Kuttu, S. (2018). Modelling Long Memory in Volatility in Sub-Saharan African Equity Markets. Research in International Business and Finance, 44, 176-185. google scholar
Lahmiri, S., & Bekiros, S. (2021). The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets. Chaos, Solitons & Fractals, 151, 111221. google scholar
Liesenfeld, R. (2001). A generalized bivariate mixture model for stock price volatility and trading volume. Journal of Econometrics, 104, 141-178. google scholar
Lin, W.K., Engle, R. & Ito, T. (1994). Do bulls and bears move across borders? International transmission of stock returns and volatility. The Review of Financial Studies, 7(3), 507-538. google scholar
Liu, M. (2000). Modeling long memory in stock market volatility. Journal of Econometrics, 99, 139-171. google scholar
Liu, X., H, An., Li, H., Chen, Z., Feng, S. & Wen, S. (2017). Features of spillover networks in international financial markets: Evidence from the G20 Countries. Physica A: Statistical Mechanics and Its Applicati-ons, 479, 265-78. https://doi.Org/10.1016/j.physa.2017.03.016 google scholar
Lu, F-B., Hong, Y-M., Wang, S-Y., Lai, K-K. & Liu, J. (2014). Time-varying Granger causality tests for applications in global crude oil markets. Energy Economics, 42, 289-298. https://doi.org/10.1016/j.ene-co.2014.01.002 google scholar
Lyocsa, S., Molnar, P & Vyrost, T. (2021). Stock market volatility forecasting: Do we need high-frequency data? International Journal of Forecasting, 37(3), 1092-1110. https://doi.org/10.1016/j.ijfore-cast.2020.12.001 google scholar
Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business. 36 (4), 394-419. google scholar
Mclver, R. P. & Kang, S. H. (2020). Financial crises and the dynamics of the spillovers between the U.S. and BRICS stock markets. Research in International Business and Finance, 54, 1-45. https://doi. org/10.1016/j.ribaf.2020.101276 google scholar
Mensi, W., Maitra, D., Vo, X. V. & Kang, S. H. (2020). Asymmetric volatility connectedness among main international stock markets: A high frequency analysis. Borsa İstanbul Review, 21(3), 291-306. https:// doi.org/10.1016/j.bir.2020.12.003 google scholar
Nasr, A. B., Lux, T., Ajmi, A. N. & Gupta, R. (2016). Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. Regime Switching. International Review of Economics and Fi-nance, 45, 559-571. google scholar
Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260 google scholar
Özden, H. Ü. (2008). Analysis of Istanbul Stock Exchange 100 Index’s return volatility. İstanbul Commerce University Journal of Social Sciences, 7(13), 339-350. google scholar
Pantelidis, T. & Pittis, N. (2004). Testing for Granger causality in variance in the presence of causality in mean. Economic Letters, 85, 201-207. https://doi.org/10.1016/j.econlet.2004.04.006 google scholar
Pindyck, R.S., (2004). Volatility in natural gas and oil markets. Unpublished Manuscript, Massachusetts Institute of Technology, Cambridge, MA. google scholar
Poon, S.-H. (2005). A Practical Guide to Forecasting Financial Market Volatility. West Sussex: John Wiley & Sons Inc. google scholar
Poon, S. H., & Granger, C. W. (2003). Forecasting volatility in financial markets: A review. Journal of Eco-nomic Literature, 41(2), 478-539. google scholar
Pong, S., Shackleton, M. B. &Taylor, S. J. (2008). Distinguishing short and long memory volatility specifi-cations”, The Econometrics Journal, 11(3), 617-637. https://doi.org/10.1111/j.1368-423X.2008.00251.x google scholar
Rodrigues, P.M.M. & Rubia, A. (2007). Testing for causality in variance under non-stationarity in variance. Econ. Lett, 97, 133-137. google scholar
Ross, S. A. (1989). Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy. The Journal of Finance, 44(1), 1-17. google scholar
Saleem, K. (2009). International linkage of the Russian market and the Russian financial crisis: a multivariate GARCH analysis. Research in International Business and Finance, 23, 243-256. google scholar
Xekalaki, E. and Degiannakis, S. (2010). ARCH Models for Financial Applications, West Sussex: John Wi-ley & Son Ltd. google scholar
Terasvirta, T. (2009), “An introduction to univariate GARC”, Andersen, G.T., Davis, R. A., Kreib, J-P., Mi-kosch, T. (Ed), Handbook of Financial Time Series, Heidelberg: Springer Berlin, pp. 17-42. google scholar
Topaloglu, E. E. (2020). Volatility structure and volatility spillover of Borsa Istanbul Stock Indexes: The case of BIST Industrial and Financial Indexes with GARCH And MGARCH Models. Dumlupınar University Journal of Social Sciences, 63, 17-38. google scholar
Tse, Y. K. (1998). The conditional heteroscedasticity of the Yen-Dollar exchange rate. Journal of Applied Econometrics, 13(1), 49-55. google scholar
Van Dijk, D., Osborn, D.R. & Sensier, M. (2005). Testing for causality invariance in the presence of breaks. Econ. Lett, 89, 193-199. google scholar
Wang, L., Ma, F., Liu, J. & Yang, L. (2020). Forecasting stock price volatility: New evidence from the GARCH-MIDAS model. International Journal of Forecasting, 36(2), 684-694. https://doi.org/10.1016/j. ijforecast.2019.08.005 google scholar
Wu, X. & Wang, X. (2020). Forecasting volatility using realized stochastic volatility model with time-var-ying leverage effect”, Finance Research Letters, 34, 101271. https://doi.org/10.1016/j.frl.2019.08.019 google scholar
Yarovaya,L., Brzeszczynski,J. & Lau, M. (2016). Intra- and inter-regional return and volatility spillovers ac-ross emerging and developed markets: Evidence from stock indices and stock index futures. International Review of Financial Analysis, 43, 96-114. https://doi.org/10.1016/j.irfa.2015.09.004 google scholar
Yıldırım, D.C. Cevik, E. İ. & Esen, Ö. (2020). Time-varying volatility spillovers between oil prices and pre-cious metal prices. Resources Policy, 68, 1-14. https://doi.org/10.1016/j.resourpol.2020.101783 google scholar
Yıldız, B. (2016). Volatility forecasting with symmetric and asymmetric GARCH Models: An application on selected ISE sub-sectors. Journal of Accounting and Finance, 83-105 google scholar
Yu, J. (2002). Forecasting volatility in the New Zealand stock market. Applied Financial Economics, 12(3), 193-202. https://doi.org/10.1080/09603100110090118 google scholar
Zhang, Y., Ma, F. & Liao, Y. (2020). Forecasting global equity market volatilities. International Journal of Forecasting, 36(4), 1454-1475. https://doi.org/10.1016/j.ijforecast.2020.02.007 google scholar
Al-Hajieh, H. (2017). Evaluated the success of Fractional Integrated GARCH models on prediction stock market return volatility in Gulf Arab stock markets. International Journal of Economics and Finance, 9(7), 200-213. google scholar
Altuntas Taspunar, S. & Colak, F. D. (2015). Modelling and estimating volatility with ARCH Models At ISE-100 Index. İstanbul Management Journal, 26 (79), 208-223. google scholar
Andersen, T. G. & Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. The Journal Of Finance, 52(3), 975-1005. google scholar
Ay, G. & Gün, M. (2020). Volatility modelling in Borsa Istanbul Stock Market: An application on BIST Banking Index. Business & Management Studies: An International Journal, 8(5), 3795-3814. https://doi. org/10.15295/bmij.v8i5.1547 google scholar
Baillie, R., Bollerslev, T. & Mikkelsen, H. O. (1996). Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity. Journal Of Econometrics, 74(1), 3-30. https://doi.org/10.1016/S0304-4076(95)01749-6 google scholar
Baillie, R. T. & Morana, C. (2009). Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach. Journal of Economic Dynamics & Control, 33, 1577-1592. google scholar
Bayramoglu, M. F. & Abasız, T. (2017). The analysis of volatility spillover effect between emerging market indices. Journal of Accounting and Finance, 183-199. google scholar
Beirne,J., Caporale, G. M., Schulze-Ghattas, M. & Spagnolo, N. (2010). Global and regional spillovers in emerging stock markets: A multivariate GARCH-in-mean analysis. Emerging Markets Review, 11 (3), 250-260. https://doi.org/10.1016/j.ememar.2010.05.002 google scholar
Bentes, S. R. (2014). Measuring persistence in stock market volatility using the FIGARCH approach. Physi-ca A: Statistical Mechanics and its Applications, 408, 190-197. google scholar
Bentes, S. R., Menezes, R. & Mendes, D. (2008). Long Memory and Volatility Clustering: Is the Empirical Evidence Consistent Across Stock Markets ? Physica A, 387: 3826-3830. google scholar
Berberoglu, M. (2020). The investigation of volatility spillover effect between stock markets of Türkiye, Italy, Greece and Russia. Business & Management Studies: An international Journal, 8(2), 1576-1598. https://doi.org/10.15295/bmij.v8i2.1475 google scholar
Berger, D., Chaboud, A., & Hjalmarsson, E. (2009). What drives volatility persistence in the foreign exchan-ge market? Journal of Financial Economics, 94(2), 192-213. google scholar
Bhowmik, D .(2013). Stock Market Volatility: An Evaluation. International Journal of Scientific and Rese-arch Publications, 3 (10), 1-17. google scholar
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 google scholar
Bollerslev, T., Engle, R. F. & Nelson, D. B. (1994). ARCH models. Handbook of Econometrics, 4, 29593038. google scholar
Bollerslev, T. & Mikkelsen, H. (1996). Modeling and pricing long memory in stock market volatility. Jour-nal of Econometrics, 73(1), 151-184. https://doi.org/10.1016/0304-4076(95)01736-4 google scholar
Bose, S. (2007). Understanding the Volatility Characteristics and Transmisson Effect in the Indian Stock Index and Index Futures Market, ICRA Bulletin- Money & Finance, 139-162 google scholar
Brooks, R. (2007). Power ARCH modelling of the volatility of emerging equity markets. Emerging Markets Review, 8, 124-133. google scholar
Brooks, C. (2008). Introductory Econometrics for Finance. Second Edition. Cambridge: Cambridge Uni-versity Press. google scholar
Büberkökü, Ö. & Kızıldere, C. (2017). Examining the properties of BIST100 Index return volatility. V. Anadolu International Conference in Economics, Eskişehir/Türkiye. google scholar
Caglı, E. Ç., Mandacı, P. E. & Kahyaoğlu, H. (2011). Volatility shifts and persistence in variance: Evidence from the sector indices of Istanbul Stock Exchange. International Journal of Economic Sciences and Applied Research, 4(3), 119-140. google scholar
Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics, 31(3), 281-318. google scholar
Carroll, R. & Kearney, C. (2009), “GARCH modeling of stock market volatility”, Gregoriou, G. N. (Ed), Stock Market Volatility, Chapman & Hall/CRC, pp. 71-90. google scholar
Celik, İ., Özdemir, A. & Gülbahar Demir, S. (2018). Return and volatility spillover between Islamic stock indices: An application of multivarite VAR-EGARCH on developed and emerging markets. Bulletin of Accounting and Finance Reviews, 1(2), 89-100. google scholar
Çevik, E. İ. (2012). The testing of effıcient market hypothesis ın the Istanbul stock exchange by using long memory models: A sector-specific analysis. Journal of Yaşar University, 7(26), 4437-4454. google scholar
Çevik, E. İ. &Topaloglu, G. (2014). Long memory and structural breaks on volatility: Evidence from Borsa Istanbul. Balkan Journal of Social Sciences, 3(6), 40-55. google scholar
Chang, C-L., McALeer, M. & Tansuchat, R. (2012). Modelling long memory volatility in agricultu-ral commodity futures returns. Annals of Financial Economics, 7(2),1-27. https://doi.org/10.1142/ S2010495212500108 google scholar
Chikli, W., Aloui, C. & Nguyen, D. K. (2012). Asymmetric Effects and Long Memory in Dynamic Volatility Relationships Between Stock Returns and Exchange Rates. Int. Fin. Markets Inst. and Money. 22, 738757 google scholar
Chong, C. W., Ahmad, M. I., & Abdullah, M. Y. (1999). Performance of GARCH models in forecasting stock market volatility. Journal of forecasting, 18(5), 333-343. https://doi.org/10.1002/(SICI)1099-131X(199909)18:5<333::AID-FOR742>3.0.CO;2-K google scholar
Christensen, B. J., Nielsen, M. O. & Zhu, J. (2010). Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model. Journal of Empirical Finance. 17, 460-47 google scholar
Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models and a new model. Journal of Business & Economic Statistics, 22(1), 16-29. google scholar
Dedi, L. & Yavas, B.F. (2016). Return and volatility spillovers in equity markets: An investigation using various GARCH methodologies. Cogent Economics& Finance, 4, 1-18. https://doi.org/10.1080/233220 39.2016.1266788 google scholar
Ding, Z., Granger, C.W. J. & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D google scholar
Engle, R. F., Ito, T. & Lın, W-L. (1990). Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Econometrica, 58(3), 525-542. https://doi.org/10.2307/2938189 google scholar
Engle, R. F. & Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x google scholar
Ewing, T. B. & Malik, F. (2017). Modelling asymmetric volatility in oil prices under structural breaks. Energy Economics, 63, 227-233. https://doi.org/10.1016/j.eneco.2017.03.001 google scholar
French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of financial Economics, 19(1), 3-29. google scholar
Gaye Gencer, H., & Demiralay, S. (2016). Volatility modeling and value-at-risk (var) forecasting of emerging stock markets in the presence of long memory, asymmetry, and skewed heavy tails. Emerging Markets Finance and Trade, 52(3), 639-657. google scholar
Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993). On the Relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779- 1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x google scholar
Gökbulut, R. İ. (2017). An empirical analysis of volatility transmission between BIST and international stock markets. The International Journal of Economic and Social Research, 13(1), 141-159. google scholar
Günay, S. (2014). Long memory property and structural breaks in volatility: Evidence from Türkiye and Brazil. International Journal of Economics and Finance, 6(12), 119. google scholar
Gürsoy, S. & Eroglu, Ö. (2016). Return and volatility spillovers among the share markets of emerging eco-nomies: an analysis from 2006 to 2015 years. Mehmet Akif Ersoy University Journal of Economics and Administrative Sciences, 3(5), 16-33 google scholar
Hong, Y. (2001). A test for volatility spillover with application to exchange rates. Journal of Economet-rics, 103 (1-2), 183-224. https://doi.org/10.1016/S0304-4076(01)00043-4 google scholar
Kalotychou, E., & Staikouras, K. S. (2009), “An overview of the issues surrounding stock market volatility”, Gregoriou, G. N. (Ed), Stock Market Volatility, Plattsburgh/New York: A Chapman & Hall /CRC Finance, pp. 3-29. google scholar
Karabacak, M., Mecik, O. & Genc, E. (2014). Estimating the volatility of BIST 100 Index return and gold return index with conditional heteroscedasticity models. International Journal of Alanya Faculty of Bu-siness, 6(1), 79-90. google scholar
Koutmos, G. & Booth, G.G. (1995). Asymmetric volatility transmission in international stock markets. Jour-nal of International Money and Finance, 14(6), 747-762. google scholar
Koy, A. & Ekim. (2016). Modelling the volatility of Istanbul Stock Exchange Sector Indexes. E- Journal of the Faculty of Economic and Administrative Sciences, 5(2), 1-23. google scholar
Kula, V. & Baykut, E. (2017). Volatility in emerging stock markets: Measuring and comparing volatility structure of BRIC and BIST. V. Anadolu International Conference in Economics, Eskişehir/Türkiye. google scholar
Kutlar, A. & Torun, P. (2012). Selecting An appropriate Generalized Conditional Heteroscedastic Model for the Daily ISE 100 Index Returns. Third International Economy Conference, Çeşme/İzmir/Türkiye, pp. 1-24. google scholar
Kutlu, M. & Karakaya, A. (2020). Return and volatility spillover effects between the Türkiye and the Russia stock market. Journal of Economic and Administrative Sciences, 37(4), 456-470. https://doi.org/10.1108/ JEAS-10-2019-0114 google scholar
Kuttu, S. (2018). Modelling Long Memory in Volatility in Sub-Saharan African Equity Markets. Research in International Business and Finance, 44, 176-185. google scholar
Lahmiri, S., & Bekiros, S. (2021). The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets. Chaos, Solitons & Fractals, 151, 111221. google scholar
Liesenfeld, R. (2001). A generalized bivariate mixture model for stock price volatility and trading volume. Journal of Econometrics, 104, 141-178. google scholar
Lin, W.K., Engle, R. & Ito, T. (1994). Do bulls and bears move across borders? International transmission of stock returns and volatility. The Review of Financial Studies, 7(3), 507-538. google scholar
Liu, M. (2000). Modeling long memory in stock market volatility. Journal of Econometrics, 99, 139-171. google scholar
Liu, X., H, An., Li, H., Chen, Z., Feng, S. & Wen, S. (2017). Features of spillover networks in international financial markets: Evidence from the G20 Countries. Physica A: Statistical Mechanics and Its Applicati-ons, 479, 265-78. https://doi.Org/10.1016/j.physa.2017.03.016 google scholar
Lu, F-B., Hong, Y-M., Wang, S-Y., Lai, K-K. & Liu, J. (2014). Time-varying Granger causality tests for applications in global crude oil markets. Energy Economics, 42, 289-298. https://doi.org/10.1016/j.ene-co.2014.01.002 google scholar
Lyocsa, S., Molnar, P & Vyrost, T. (2021). Stock market volatility forecasting: Do we need high-frequency data? International Journal of Forecasting, 37(3), 1092-1110. https://doi.org/10.1016/j.ijfore-cast.2020.12.001 google scholar
Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business. 36 (4), 394-419. google scholar
Mclver, R. P. & Kang, S. H. (2020). Financial crises and the dynamics of the spillovers between the U.S. and BRICS stock markets. Research in International Business and Finance, 54, 1-45. https://doi. org/10.1016/j.ribaf.2020.101276 google scholar
Mensi, W., Maitra, D., Vo, X. V. & Kang, S. H. (2020). Asymmetric volatility connectedness among main international stock markets: A high frequency analysis. Borsa İstanbul Review, 21(3), 291-306. https:// doi.org/10.1016/j.bir.2020.12.003 google scholar
Nasr, A. B., Lux, T., Ajmi, A. N. & Gupta, R. (2016). Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. Regime Switching. International Review of Economics and Fi-nance, 45, 559-571. google scholar
Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260 google scholar
Özden, H. Ü. (2008). Analysis of Istanbul Stock Exchange 100 Index’s return volatility. İstanbul Commerce University Journal of Social Sciences, 7(13), 339-350. google scholar
Pantelidis, T. & Pittis, N. (2004). Testing for Granger causality in variance in the presence of causality in mean. Economic Letters, 85, 201-207. https://doi.org/10.1016/j.econlet.2004.04.006 google scholar
Pindyck, R.S., (2004). Volatility in natural gas and oil markets. Unpublished Manuscript, Massachusetts Institute of Technology, Cambridge, MA. google scholar
Poon, S.-H. (2005). A Practical Guide to Forecasting Financial Market Volatility. West Sussex: John Wiley & Sons Inc. google scholar
Poon, S. H., & Granger, C. W. (2003). Forecasting volatility in financial markets: A review. Journal of Eco-nomic Literature, 41(2), 478-539. google scholar
Pong, S., Shackleton, M. B. &Taylor, S. J. (2008). Distinguishing short and long memory volatility specifi-cations”, The Econometrics Journal, 11(3), 617-637. https://doi.org/10.1111/j.1368-423X.2008.00251.x google scholar
Rodrigues, P.M.M. & Rubia, A. (2007). Testing for causality in variance under non-stationarity in variance. Econ. Lett, 97, 133-137. google scholar
Ross, S. A. (1989). Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy. The Journal of Finance, 44(1), 1-17. google scholar
Saleem, K. (2009). International linkage of the Russian market and the Russian financial crisis: a multivariate GARCH analysis. Research in International Business and Finance, 23, 243-256. google scholar
Xekalaki, E. and Degiannakis, S. (2010). ARCH Models for Financial Applications, West Sussex: John Wi-ley & Son Ltd. google scholar
Terasvirta, T. (2009), “An introduction to univariate GARC”, Andersen, G.T., Davis, R. A., Kreib, J-P., Mi-kosch, T. (Ed), Handbook of Financial Time Series, Heidelberg: Springer Berlin, pp. 17-42. google scholar
Topaloglu, E. E. (2020). Volatility structure and volatility spillover of Borsa Istanbul Stock Indexes: The case of BIST Industrial and Financial Indexes with GARCH And MGARCH Models. Dumlupınar University Journal of Social Sciences, 63, 17-38. google scholar
Tse, Y. K. (1998). The conditional heteroscedasticity of the Yen-Dollar exchange rate. Journal of Applied Econometrics, 13(1), 49-55. google scholar
Van Dijk, D., Osborn, D.R. & Sensier, M. (2005). Testing for causality invariance in the presence of breaks. Econ. Lett, 89, 193-199. google scholar
Wang, L., Ma, F., Liu, J. & Yang, L. (2020). Forecasting stock price volatility: New evidence from the GARCH-MIDAS model. International Journal of Forecasting, 36(2), 684-694. https://doi.org/10.1016/j. ijforecast.2019.08.005 google scholar
Wu, X. & Wang, X. (2020). Forecasting volatility using realized stochastic volatility model with time-var-ying leverage effect”, Finance Research Letters, 34, 101271. https://doi.org/10.1016/j.frl.2019.08.019 google scholar
Yarovaya,L., Brzeszczynski,J. & Lau, M. (2016). Intra- and inter-regional return and volatility spillovers ac-ross emerging and developed markets: Evidence from stock indices and stock index futures. International Review of Financial Analysis, 43, 96-114. https://doi.org/10.1016/j.irfa.2015.09.004 google scholar
Yıldırım, D.C. Cevik, E. İ. & Esen, Ö. (2020). Time-varying volatility spillovers between oil prices and pre-cious metal prices. Resources Policy, 68, 1-14. https://doi.org/10.1016/j.resourpol.2020.101783 google scholar
Yıldız, B. (2016). Volatility forecasting with symmetric and asymmetric GARCH Models: An application on selected ISE sub-sectors. Journal of Accounting and Finance, 83-105 google scholar
Yu, J. (2002). Forecasting volatility in the New Zealand stock market. Applied Financial Economics, 12(3), 193-202. https://doi.org/10.1080/09603100110090118 google scholar
Zhang, Y., Ma, F. & Liao, Y. (2020). Forecasting global equity market volatilities. International Journal of Forecasting, 36(4), 1454-1475. https://doi.org/10.1016/j.ijforecast.2020.02.007 google scholar
Gençyürek, A. G. (2024). Volatility Modeling and Spillover: The Turkish and Russian Stock Markets. Istanbul Business Research, 53(1), 81-101. https://doi.org/10.26650/ibr.2024.53.162811