Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 3 Sayı: Special Issue: Full Papers of 2nd International Congress of Updates in Biomedical Engineering, 102 - 111, 13.01.2021

Öz

Kaynakça

  • 1. Holzapfel, B. M., Reichert, J. C., Schantz, J. T., Gbureck, U., Rackwitz, L., Nöth, U., ... & Hutmacher, D. W. (2013). How smart do biomaterials need to be? A translational science and clinical point of view. Advanced drug delivery reviews, 65(4), 581-603.
  • 2. Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging infectious diseases, 8(9), 881.
  • 3. Meyer, B. (2003). Approaches to prevention, removal and killing of biofilms. International biodeterioration & biodegradation, 51(4), 249-253.
  • 4. Høiby, N., Ciofu, O., Johansen, H. K., Song, Z. J., Moser, C., Jensen, P. Ø., ... & Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. International journal of oral science, 3(2), 55-65.
  • 5. Swartjes, J. J., Sharma, P. K., Kooten, T. G., van der Mei, H. C., Mahmoudi, M., Busscher, H. J., & Rochford, E. T. (2015). Current developments in antimicrobial surface coatings for biomedical applications. Current Medicinal Chemistry, 22(18), 2116-2129.
  • 6. Yasuda, H., & Gazicki, M. (1982). Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials, 3(2), 68-77.
  • 7. Tang, Z., Kong, N., Ouyang, J., Feng, C., Kim, N. Y., Ji, X., ... & Tao, W. (2020). Phosphorus science-oriented design and synthesis of multifunctional nanomaterials for biomedical applications. Matter, 2(2), 297-322.
  • 8. Akdogan, E., Demirbilek, M., Sen, Y., Onur, M. A., Azap, O. K., Sonmez, E., ... & Mutlu, M. (2019). In vitro and in vivo bacterial antifouling properties of phosphite plasma-treated silicone. Surface Innovations, 7(2), 122-132.
  • 9. Kaleli-Can, G., Özgüzar, H. F., Kahriman, S., Türkal, M., Göçmen, J. S., Yurtçu, E., & Mutlu, M. (2020). Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification. Materials Today Communications, 25, 101565.
  • 10. Kaleli-Can, G., Hortaç-İştar, E., Özgüzar, H.F., Mutlu, M., Mirza, H.C., Başustaoğlu, A., Göçmen, J.S. (2020) Prevention of Candida biofilm formation over polystyrene by plasma polymerization technique. MRS Communications.
  • 11. Elias, C. N., Lima, J. H. C., Valiev, R., & Meyers, M. A. (2008). Biomedical applications of titanium and its alloys. Jom, 60(3), 46-49.
  • 12. Özcan, M., & Hämmerle, C. (2012). Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials, 5(9), 1528-1545.
  • 13. JIS, Z. (2000). 2801: 2000 Antimicrobial Products-Test for Antimicrobial Activity and Efficacy. Japanese Standards Association, Akasaka, Minato-ku, Japan.
  • 14. Yurtcu, E., İşeri, Ö. D., & Sahin, F. I. (2014). Genotoxic and cytotoxic effects of doxorubicin and silymarin on human hepatocellular carcinoma cells. Human & experimental toxicology, 33(12), 1269-1276.
  • 15. Occhiello, E., Morra, M., Cinquina, P., & Garbassi, F. (1992). Hydrophobic recovery of oxygen-plasma-treated polystyrene. Polymer, 33(14), 3007-3015.
  • 16. Behnisch, J., Holländer, A., & Zimmermann, H. (1993). Factors influencing the hydrophobic recovery of oxygen-plasma-treated polyethylene. Surface and Coatings Technology, 59(1-3), 356-358.
  • 17. Della Volpe, C., Fambri, L., Fenner, R., Migliaresi, C., & Pegoretti, A. (1994). Air-plasma treated polyethylene fibres: effect of time and temperature ageing on fibre surface properties and on fibre-matrix adhesion. Journal of materials science, 29(15), 3919-3925.
  • 18. Jensen, C., Zhang, C., & Qiu, Y. (2003). The aging of atmospheric plasma-treated ultrahigh-modulus polyethylene fibers. Composite Interfaces, 10(2-3), 277-285.
  • 19. Lawton, R. A., Price, C. R., Runge, A. F., Doherty III, W. J., & Saavedra, S. S. (2005). Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253(1-3), 213-215.
  • 20. Siow, K. S., Britcher, L., Kumar, S., & Griesser, H. J. (2014). Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus. Plasma Processes and Polymers, 11(2), 133-141.

The Effect of Plasma Treatment Parameters on Antibacterial and Antifungal Activity of Plasma Polymerized Diethyl Phosphite Thin Films

Yıl 2021, Cilt: 3 Sayı: Special Issue: Full Papers of 2nd International Congress of Updates in Biomedical Engineering, 102 - 111, 13.01.2021

Öz

In this study, plasma polymerization technique for the production of antimicrobial surfaces was studied to inhibit the formation of biofilm of Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) for foreign materials in biomedical application. Low pressure RF-plasma system was used to coat Ti surfaces. Ti surfaces were exposed to diethyl phosphite (DEP) plasma generated with different discharge power varying from 25-90 W for 1-10 min of exposure times at a constant pressure of 0.15 mbar. Surface hydrophobicity and surface energies of unmodified and DEP modified Ti surfaces were used to enlighten surface wettability by the sessile drop method using contact angle analyser. All DEP coatings produced with different plasma conditions increased both the surface hydrophilicity from 100° to 30-48° and surface energies of Ti surfaces from 33mJ/m2 to 61-71mj/m2. Aging of the DEP coatings on Ti surfaces was analyzed in terms of change in surface energies by time within 30 days. Even though the stability of phosphorus containing thin films has been problematic due to the post-plasma oxidation, thin films produced with 25 W-5 min, 50 W-5 min, 75 W-10 min and 90 W-1 min were found more stable compared to the others. The antibacterial and antifungal activity of unmodified and DEP modified Ti surfaces was studied against S. aureus and C. albicans, respectively. While the adhesion and growth of both bacteria and fungi was observed on unmodified Ti surfaces, antimicrobial activity was observed after surface modification with DEP plasma with different plasma conditions. The highest efficiency for anti-fungal coating was obtained with 50 W-5 min, 75 W-10 min and 90 W-10 min and the highest antibacterial activity was achieved with 25 W- 1min, 50W-5 min, 50 W-10 min and 75 W-10 min. Additionally, surface modification with DEP plasma increased L929 fibroblast cell viability of Ti surfaces. The chosen precursor, DEP, solves problems in reducing the risk of infection associated with Ti implants with plasma polymerization technique.

Kaynakça

  • 1. Holzapfel, B. M., Reichert, J. C., Schantz, J. T., Gbureck, U., Rackwitz, L., Nöth, U., ... & Hutmacher, D. W. (2013). How smart do biomaterials need to be? A translational science and clinical point of view. Advanced drug delivery reviews, 65(4), 581-603.
  • 2. Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging infectious diseases, 8(9), 881.
  • 3. Meyer, B. (2003). Approaches to prevention, removal and killing of biofilms. International biodeterioration & biodegradation, 51(4), 249-253.
  • 4. Høiby, N., Ciofu, O., Johansen, H. K., Song, Z. J., Moser, C., Jensen, P. Ø., ... & Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. International journal of oral science, 3(2), 55-65.
  • 5. Swartjes, J. J., Sharma, P. K., Kooten, T. G., van der Mei, H. C., Mahmoudi, M., Busscher, H. J., & Rochford, E. T. (2015). Current developments in antimicrobial surface coatings for biomedical applications. Current Medicinal Chemistry, 22(18), 2116-2129.
  • 6. Yasuda, H., & Gazicki, M. (1982). Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials, 3(2), 68-77.
  • 7. Tang, Z., Kong, N., Ouyang, J., Feng, C., Kim, N. Y., Ji, X., ... & Tao, W. (2020). Phosphorus science-oriented design and synthesis of multifunctional nanomaterials for biomedical applications. Matter, 2(2), 297-322.
  • 8. Akdogan, E., Demirbilek, M., Sen, Y., Onur, M. A., Azap, O. K., Sonmez, E., ... & Mutlu, M. (2019). In vitro and in vivo bacterial antifouling properties of phosphite plasma-treated silicone. Surface Innovations, 7(2), 122-132.
  • 9. Kaleli-Can, G., Özgüzar, H. F., Kahriman, S., Türkal, M., Göçmen, J. S., Yurtçu, E., & Mutlu, M. (2020). Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification. Materials Today Communications, 25, 101565.
  • 10. Kaleli-Can, G., Hortaç-İştar, E., Özgüzar, H.F., Mutlu, M., Mirza, H.C., Başustaoğlu, A., Göçmen, J.S. (2020) Prevention of Candida biofilm formation over polystyrene by plasma polymerization technique. MRS Communications.
  • 11. Elias, C. N., Lima, J. H. C., Valiev, R., & Meyers, M. A. (2008). Biomedical applications of titanium and its alloys. Jom, 60(3), 46-49.
  • 12. Özcan, M., & Hämmerle, C. (2012). Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials, 5(9), 1528-1545.
  • 13. JIS, Z. (2000). 2801: 2000 Antimicrobial Products-Test for Antimicrobial Activity and Efficacy. Japanese Standards Association, Akasaka, Minato-ku, Japan.
  • 14. Yurtcu, E., İşeri, Ö. D., & Sahin, F. I. (2014). Genotoxic and cytotoxic effects of doxorubicin and silymarin on human hepatocellular carcinoma cells. Human & experimental toxicology, 33(12), 1269-1276.
  • 15. Occhiello, E., Morra, M., Cinquina, P., & Garbassi, F. (1992). Hydrophobic recovery of oxygen-plasma-treated polystyrene. Polymer, 33(14), 3007-3015.
  • 16. Behnisch, J., Holländer, A., & Zimmermann, H. (1993). Factors influencing the hydrophobic recovery of oxygen-plasma-treated polyethylene. Surface and Coatings Technology, 59(1-3), 356-358.
  • 17. Della Volpe, C., Fambri, L., Fenner, R., Migliaresi, C., & Pegoretti, A. (1994). Air-plasma treated polyethylene fibres: effect of time and temperature ageing on fibre surface properties and on fibre-matrix adhesion. Journal of materials science, 29(15), 3919-3925.
  • 18. Jensen, C., Zhang, C., & Qiu, Y. (2003). The aging of atmospheric plasma-treated ultrahigh-modulus polyethylene fibers. Composite Interfaces, 10(2-3), 277-285.
  • 19. Lawton, R. A., Price, C. R., Runge, A. F., Doherty III, W. J., & Saavedra, S. S. (2005). Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253(1-3), 213-215.
  • 20. Siow, K. S., Britcher, L., Kumar, S., & Griesser, H. J. (2014). Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus. Plasma Processes and Polymers, 11(2), 133-141.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gizem Kaleli Can Bu kişi benim 0000-0002-4411-622X

Hatice Ferda Özgüzar Bu kişi benim 0000-0003-1205-6629

Selahattin Kahriman Bu kişi benim

Miranda Türkal Bu kişi benim

Julide Sedef Göçmen Bu kişi benim 0000-0001-8207-8749

Erkan Yurtçu Bu kişi benim 0000-0003-4930-8164

Mehmet Mutlu Bu kişi benim 0000-0001-7146-1937

Yayımlanma Tarihi 13 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: Special Issue: Full Papers of 2nd International Congress of Updates in Biomedical Engineering

Kaynak Göster

APA Kaleli Can, G., Özgüzar, H. F., Kahriman, S., Türkal, M., vd. (2021). The Effect of Plasma Treatment Parameters on Antibacterial and Antifungal Activity of Plasma Polymerized Diethyl Phosphite Thin Films. Natural and Applied Sciences Journal, 3(Special Issue: Full Papers of 2nd International Congress of Updates in Biomedical Engineering), 102-111.