Araştırma Makalesi
BibTex RIS Kaynak Göster

Hilbert's Syzygy Theorem for monomial ideals

Yıl 2022, , 80 - 85, 16.07.2022
https://doi.org/10.24330/ieja.1102307

Öz

We give a new proof of Hilbert's Syzygy Theorem for monomial ideals. In addition, we prove the following. If S=k[x1,,xn]S=k[x1,…,xn] is a polynomial ring over a field, MM is a squarefree monomial ideal in SS, and each minimal generator of MM has degree larger than ii, then pd(S/M)ni\pd(S/M)≤n−i.

Kaynakça

  • G. Alesandroni, Monomial ideals with large projective dimension, J. Pure Appl. Algebra, 224(6) (2020), 106257 (13 pp).
  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • D. Eisenbud, Commutative Algebra, Springer-Verlag, New York, 1995.
  • V. Gasharov, T. Hibi and I. Peeva, Resolutions of a-stable ideals, J. Algebra, 254(2) (2002), 375-394.
  • V. Gasharov, I. Peeva and V. Welker, Coordinate subspace arrangements and monomial ideals, Proceedings of the Computational Commutative Algebra and Combinatorics (Osaka, 1999), Adv. Stud. Pure Math., 33 (2002), 65-74.
  • D. Hilbert, Über die Theorie von algebraischen Formen, Math. Ann., 36 (1890), 473-534.
  • J. Mermin, Three Simplicial Resolutions, Progress in Commutative Algebra 1, De Gruyter, Berlin, 2012.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math., vol. 227, Springer-Verlag, New York, 2004.
  • I. Peeva, Graded Syzygies, Algebra and Applications, vol. 14, Springer-Verlag, London, 2011.
  • F. O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstra\ss schen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay Stellenalgebren minimaler Multiplizit\"at, Master's thesis, Universit\"at Hamburg, 1980.
Yıl 2022, , 80 - 85, 16.07.2022
https://doi.org/10.24330/ieja.1102307

Öz

Kaynakça

  • G. Alesandroni, Monomial ideals with large projective dimension, J. Pure Appl. Algebra, 224(6) (2020), 106257 (13 pp).
  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • D. Eisenbud, Commutative Algebra, Springer-Verlag, New York, 1995.
  • V. Gasharov, T. Hibi and I. Peeva, Resolutions of a-stable ideals, J. Algebra, 254(2) (2002), 375-394.
  • V. Gasharov, I. Peeva and V. Welker, Coordinate subspace arrangements and monomial ideals, Proceedings of the Computational Commutative Algebra and Combinatorics (Osaka, 1999), Adv. Stud. Pure Math., 33 (2002), 65-74.
  • D. Hilbert, Über die Theorie von algebraischen Formen, Math. Ann., 36 (1890), 473-534.
  • J. Mermin, Three Simplicial Resolutions, Progress in Commutative Algebra 1, De Gruyter, Berlin, 2012.
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math., vol. 227, Springer-Verlag, New York, 2004.
  • I. Peeva, Graded Syzygies, Algebra and Applications, vol. 14, Springer-Verlag, London, 2011.
  • F. O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstra\ss schen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay Stellenalgebren minimaler Multiplizit\"at, Master's thesis, Universit\"at Hamburg, 1980.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Guillermo Alesandronı Bu kişi benim

Yayımlanma Tarihi 16 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Alesandronı, G. (2022). Hilbert’s Syzygy Theorem for monomial ideals. International Electronic Journal of Algebra, 32(32), 80-85. https://doi.org/10.24330/ieja.1102307
AMA Alesandronı G. Hilbert’s Syzygy Theorem for monomial ideals. IEJA. Temmuz 2022;32(32):80-85. doi:10.24330/ieja.1102307
Chicago Alesandronı, Guillermo. “Hilbert’s Syzygy Theorem for Monomial Ideals”. International Electronic Journal of Algebra 32, sy. 32 (Temmuz 2022): 80-85. https://doi.org/10.24330/ieja.1102307.
EndNote Alesandronı G (01 Temmuz 2022) Hilbert’s Syzygy Theorem for monomial ideals. International Electronic Journal of Algebra 32 32 80–85.
IEEE G. Alesandronı, “Hilbert’s Syzygy Theorem for monomial ideals”, IEJA, c. 32, sy. 32, ss. 80–85, 2022, doi: 10.24330/ieja.1102307.
ISNAD Alesandronı, Guillermo. “Hilbert’s Syzygy Theorem for Monomial Ideals”. International Electronic Journal of Algebra 32/32 (Temmuz 2022), 80-85. https://doi.org/10.24330/ieja.1102307.
JAMA Alesandronı G. Hilbert’s Syzygy Theorem for monomial ideals. IEJA. 2022;32:80–85.
MLA Alesandronı, Guillermo. “Hilbert’s Syzygy Theorem for Monomial Ideals”. International Electronic Journal of Algebra, c. 32, sy. 32, 2022, ss. 80-85, doi:10.24330/ieja.1102307.
Vancouver Alesandronı G. Hilbert’s Syzygy Theorem for monomial ideals. IEJA. 2022;32(32):80-5.