Araştırma Makalesi
BibTex RIS Kaynak Göster

When does a quotient ring of a PID have the cancellation property?

Yıl 2022, , 86 - 90, 16.07.2022
https://doi.org/10.24330/ieja.1102363

Öz

An ideal $I$ of a commutative ring is called a cancellation ideal
if $IB = IC$ implies $B = C$ for all ideals $B$ and $C$.
Let $D$ be a principal ideal domain (PID), $a, b \in D$ be nonzero elements with $a \nmid b$,
$(a, b)D = dD$ for some $d \in D$, $D_a = D/aD$ be the quotient ring of $D$ modulo $aD$,
and $bD_a = (a,b)D/aD$; so $bD_a$ is a nonzero commutative ring. In this paper, we show that
the following three properties are equivalent:
(i) $\frac{a}{d}$ is a prime element and $a \nmid d^{2}$,
(ii) every nonzero ideal of $bD_a$ is a cancellation ideal,
and (iii) $bD_a$ is a field.

Kaynakça

  • D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc., 125 (1997), 2853-2854.
  • S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, Some cancellation ideal rings, Gen. Math., 13 (2005), 39-46.
  • A. Geroldinger and Q. Zhong, Factorization theory in commutative monoids, Semigroup Forum, 100 (2020), 22-51.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  • R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago, 1984.
Yıl 2022, , 86 - 90, 16.07.2022
https://doi.org/10.24330/ieja.1102363

Öz

Kaynakça

  • D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc., 125 (1997), 2853-2854.
  • S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, Some cancellation ideal rings, Gen. Math., 13 (2005), 39-46.
  • A. Geroldinger and Q. Zhong, Factorization theory in commutative monoids, Semigroup Forum, 100 (2020), 22-51.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  • R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago, 1984.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Gyu Whan Chang Bu kişi benim

Jun Seok Oh Bu kişi benim

Yayımlanma Tarihi 16 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Chang, G. W., & Oh, J. S. (2022). When does a quotient ring of a PID have the cancellation property?. International Electronic Journal of Algebra, 32(32), 86-90. https://doi.org/10.24330/ieja.1102363
AMA Chang GW, Oh JS. When does a quotient ring of a PID have the cancellation property?. IEJA. Temmuz 2022;32(32):86-90. doi:10.24330/ieja.1102363
Chicago Chang, Gyu Whan, ve Jun Seok Oh. “When Does a Quotient Ring of a PID Have the Cancellation Property?”. International Electronic Journal of Algebra 32, sy. 32 (Temmuz 2022): 86-90. https://doi.org/10.24330/ieja.1102363.
EndNote Chang GW, Oh JS (01 Temmuz 2022) When does a quotient ring of a PID have the cancellation property?. International Electronic Journal of Algebra 32 32 86–90.
IEEE G. W. Chang ve J. S. Oh, “When does a quotient ring of a PID have the cancellation property?”, IEJA, c. 32, sy. 32, ss. 86–90, 2022, doi: 10.24330/ieja.1102363.
ISNAD Chang, Gyu Whan - Oh, Jun Seok. “When Does a Quotient Ring of a PID Have the Cancellation Property?”. International Electronic Journal of Algebra 32/32 (Temmuz 2022), 86-90. https://doi.org/10.24330/ieja.1102363.
JAMA Chang GW, Oh JS. When does a quotient ring of a PID have the cancellation property?. IEJA. 2022;32:86–90.
MLA Chang, Gyu Whan ve Jun Seok Oh. “When Does a Quotient Ring of a PID Have the Cancellation Property?”. International Electronic Journal of Algebra, c. 32, sy. 32, 2022, ss. 86-90, doi:10.24330/ieja.1102363.
Vancouver Chang GW, Oh JS. When does a quotient ring of a PID have the cancellation property?. IEJA. 2022;32(32):86-90.