Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 125 - 132, 09.01.2023
https://doi.org/10.24330/ieja.1156662

Öz

Kaynakça

  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra, 217(2) (1999), 434-447.
  • D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, In: Ideal theoretic methods in commutative algebra (Columbia (MO); 1999), Lecture Notes in Pure and Applied Mathematics, vol. 220, Dekker, New York, 2001, pp. 61-72.
  • S. M. Buckley and D. Machale, Commuting probability for subrings and quotient rings, J. Algebra Comb. Discrete Struct. Appl., 4(2) (2017), 189-196.
  • D.S. Dummit and R. M. Foote, Abstract Algebra, third edition, John Wiley and Sons, Inc., Hoboken, NJ, 2004.
  • P. Erdos and P. Turan, On some problems of a statistical group theory IV, Acta Math. Acad. Sci. Hungar., 19 (1968), 413-435.
  • M. A. Esmkhani and S. M. Jafarian Amiri, The probability that the multiplication of two ring elements is zero, J. Algebra Appl., 17(3) (2018), 9 pp.
  • W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973), 1031-1034.
  • Sanhan M.S. Khasraw, What is the probability that two elements of a finite ring have product zero?, Mal. J. Fund. Appl. Sci., 16(04) (2020), 497-499.
  • D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58 (1974), 199-202.
  • D. Machale, Commutativity in finite rings, Amer. Math. Monthly, 83(1) (1975), 30-32.
  • S.P. Redmond, The zero-divisor graph of a non-commutative ring, In: Commutative rings, Nova Sci. Publ., Hauppauge, NY, 2002, 39-47.
  • S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.
  • S.P. Redmond, Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math, 30(2) (2004), 345-355.
  • S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166.
  • S. U. Rehman, A. Q. Baig and K. Haider, A probabilistic approach toward finite commutative ring, Southeast Asian Bull. Math., 43 (2019), 413-418.
  • D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math., 82 (1979), 237-247.

On generalized probability in finite commutative rings

Yıl 2023, , 125 - 132, 09.01.2023
https://doi.org/10.24330/ieja.1156662

Öz

Let $R$ be a finite commutative ring with unity and $x\in R$. We study the probability that the product of two randomly chosen elements (with replacement) of $R$ equals $x$. We denote this probability by $Prob_x (R)$. We determine some bounds for this probability and also obtain some characterizations of finite commutative rings based on this probability. Moreover, we determine the explicit computing formulas for $Prob_x (R)$ when $R=\mathbb{Z}_m\times \mathbb{Z}_n$.

Kaynakça

  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra, 217(2) (1999), 434-447.
  • D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, In: Ideal theoretic methods in commutative algebra (Columbia (MO); 1999), Lecture Notes in Pure and Applied Mathematics, vol. 220, Dekker, New York, 2001, pp. 61-72.
  • S. M. Buckley and D. Machale, Commuting probability for subrings and quotient rings, J. Algebra Comb. Discrete Struct. Appl., 4(2) (2017), 189-196.
  • D.S. Dummit and R. M. Foote, Abstract Algebra, third edition, John Wiley and Sons, Inc., Hoboken, NJ, 2004.
  • P. Erdos and P. Turan, On some problems of a statistical group theory IV, Acta Math. Acad. Sci. Hungar., 19 (1968), 413-435.
  • M. A. Esmkhani and S. M. Jafarian Amiri, The probability that the multiplication of two ring elements is zero, J. Algebra Appl., 17(3) (2018), 9 pp.
  • W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973), 1031-1034.
  • Sanhan M.S. Khasraw, What is the probability that two elements of a finite ring have product zero?, Mal. J. Fund. Appl. Sci., 16(04) (2020), 497-499.
  • D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58 (1974), 199-202.
  • D. Machale, Commutativity in finite rings, Amer. Math. Monthly, 83(1) (1975), 30-32.
  • S.P. Redmond, The zero-divisor graph of a non-commutative ring, In: Commutative rings, Nova Sci. Publ., Hauppauge, NY, 2002, 39-47.
  • S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.
  • S.P. Redmond, Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math, 30(2) (2004), 345-355.
  • S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166.
  • S. U. Rehman, A. Q. Baig and K. Haider, A probabilistic approach toward finite commutative ring, Southeast Asian Bull. Math., 43 (2019), 413-418.
  • D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math., 82 (1979), 237-247.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Shafiq Ur Rehman Bu kişi benim

Muhammad Naveed Shaheryar Bu kişi benim

Yayımlanma Tarihi 9 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Rehman, S. U., & Shaheryar, M. N. (2023). On generalized probability in finite commutative rings. International Electronic Journal of Algebra, 33(33), 125-132. https://doi.org/10.24330/ieja.1156662
AMA Rehman SU, Shaheryar MN. On generalized probability in finite commutative rings. IEJA. Ocak 2023;33(33):125-132. doi:10.24330/ieja.1156662
Chicago Rehman, Shafiq Ur, ve Muhammad Naveed Shaheryar. “On Generalized Probability in Finite Commutative Rings”. International Electronic Journal of Algebra 33, sy. 33 (Ocak 2023): 125-32. https://doi.org/10.24330/ieja.1156662.
EndNote Rehman SU, Shaheryar MN (01 Ocak 2023) On generalized probability in finite commutative rings. International Electronic Journal of Algebra 33 33 125–132.
IEEE S. U. Rehman ve M. N. Shaheryar, “On generalized probability in finite commutative rings”, IEJA, c. 33, sy. 33, ss. 125–132, 2023, doi: 10.24330/ieja.1156662.
ISNAD Rehman, Shafiq Ur - Shaheryar, Muhammad Naveed. “On Generalized Probability in Finite Commutative Rings”. International Electronic Journal of Algebra 33/33 (Ocak 2023), 125-132. https://doi.org/10.24330/ieja.1156662.
JAMA Rehman SU, Shaheryar MN. On generalized probability in finite commutative rings. IEJA. 2023;33:125–132.
MLA Rehman, Shafiq Ur ve Muhammad Naveed Shaheryar. “On Generalized Probability in Finite Commutative Rings”. International Electronic Journal of Algebra, c. 33, sy. 33, 2023, ss. 125-32, doi:10.24330/ieja.1156662.
Vancouver Rehman SU, Shaheryar MN. On generalized probability in finite commutative rings. IEJA. 2023;33(33):125-32.