This is the first in a series of papers highlighting the applications of reduced and coreduced modules. Let $R$ be a commutative unital ring and $I$ be an ideal of $R$. We show that $I$-reduced $R$-modules and $I$-coreduced $R$-modules provide a setting in which the Matlis-Greenless-May (MGM) Equivalence and the Greenless-May (GM) Duality hold. These two notions have been hitherto only known to exist in the derived category setting. We realise the $I$-torsion and the $I$-adic completion functors as representable functors and under suitable conditions compute natural transformations between them and other functors.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 24 Mayıs 2023 |
Yayımlanma Tarihi | 9 Ocak 2024 |
Yayımlandığı Sayı | Yıl 2024 |