For any commutative ring $A$ we introduce a generalization of $S$--noetherian rings using a here\-ditary torsion theory $\sigma$ instead of a multiplicatively closed subset $S\subseteq{A}$. It is proved that totally noetherian w.r.t. $\sigma$ is a local property, and if $A$ is a totally noetherian ring w.r.t $\sigma$, then $\sigma$ is of finite type.
Noetherian ring and module polynomial ring formal power series ring
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 24 Mayıs 2023 |
Yayımlanma Tarihi | 10 Temmuz 2023 |
Yayımlandığı Sayı | Yıl 2023 |