Araştırma Makalesi
BibTex RIS Kaynak Göster

An extension of $S$--noetherian rings and modules

Yıl 2023, , 1 - 20, 10.07.2023
https://doi.org/10.24330/ieja.1300716

Öz

For any commutative ring $A$ we introduce a generalization of $S$--noetherian rings using a here\-ditary torsion theory $\sigma$ instead of a multiplicatively closed subset $S\subseteq{A}$. It is proved that totally noetherian w.r.t. $\sigma$ is a local property, and if $A$ is a totally noetherian ring w.r.t $\sigma$, then $\sigma$ is of finite type.

Kaynakça

  • H. Ahmed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • T.~Dumitrescu, Generic fiber of power series ring extensions, Comm. Algebra, 37(3) (2009), 1098-1103.
  • M. Eljeri, $S$-strongly finite type rings, Asian Research J. Math., 9(4) (2018), 1-9.
  • J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Math., 29, Pitman, 1986.
  • E. Hamann, E. Houston and J. L. Johnson, Properties of uppers to zero in $R[X]$, Pacific J. Math., 135(1) (1988), 65-79.
  • P. Jara, An extension of $S$-artinian rings and modules to a hereditary torsion theory setting, Comm. Algebra, 49(4) (2021), 1583-1599.
  • A. V. Jategaonkar, Endomorphism rings of torsionless modules, Trans. Amer. Math. Soc., 161 (1971), 457-466.
  • C. Jayaram, K. H. Oral and U. Tekir, Strongly 0-dimensional rings, Comm. Algebra, 41(6) (2013), 2026-2032.
  • P. Jothilingam, Cohen's theorem and Eakin-Nagata theorem revisited, Comm. Algebra, 28(10) (2000), 4861-4866.
  • J. W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55(3) (2015), 507-514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebra along an ideal, J. Pure Appl. Algebra, 218(6) (2014), 1075-1080.
  • Z. Liu, On $S$-Noetherian rings, Arch. Math. (Brno), 43(1) (2007), 55-60.
  • E. S. Sevim, U. Tekir and S. Koc, $S$-artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
  • B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.
Yıl 2023, , 1 - 20, 10.07.2023
https://doi.org/10.24330/ieja.1300716

Öz

Kaynakça

  • H. Ahmed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • T.~Dumitrescu, Generic fiber of power series ring extensions, Comm. Algebra, 37(3) (2009), 1098-1103.
  • M. Eljeri, $S$-strongly finite type rings, Asian Research J. Math., 9(4) (2018), 1-9.
  • J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Math., 29, Pitman, 1986.
  • E. Hamann, E. Houston and J. L. Johnson, Properties of uppers to zero in $R[X]$, Pacific J. Math., 135(1) (1988), 65-79.
  • P. Jara, An extension of $S$-artinian rings and modules to a hereditary torsion theory setting, Comm. Algebra, 49(4) (2021), 1583-1599.
  • A. V. Jategaonkar, Endomorphism rings of torsionless modules, Trans. Amer. Math. Soc., 161 (1971), 457-466.
  • C. Jayaram, K. H. Oral and U. Tekir, Strongly 0-dimensional rings, Comm. Algebra, 41(6) (2013), 2026-2032.
  • P. Jothilingam, Cohen's theorem and Eakin-Nagata theorem revisited, Comm. Algebra, 28(10) (2000), 4861-4866.
  • J. W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55(3) (2015), 507-514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebra along an ideal, J. Pure Appl. Algebra, 218(6) (2014), 1075-1080.
  • Z. Liu, On $S$-Noetherian rings, Arch. Math. (Brno), 43(1) (2007), 55-60.
  • E. S. Sevim, U. Tekir and S. Koc, $S$-artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
  • B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Pascual Jara Bu kişi benim

Erken Görünüm Tarihi 24 Mayıs 2023
Yayımlanma Tarihi 10 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Jara, P. (2023). An extension of $S$--noetherian rings and modules. International Electronic Journal of Algebra, 34(34), 1-20. https://doi.org/10.24330/ieja.1300716
AMA Jara P. An extension of $S$--noetherian rings and modules. IEJA. Temmuz 2023;34(34):1-20. doi:10.24330/ieja.1300716
Chicago Jara, Pascual. “An Extension of $S$--Noetherian Rings and Modules”. International Electronic Journal of Algebra 34, sy. 34 (Temmuz 2023): 1-20. https://doi.org/10.24330/ieja.1300716.
EndNote Jara P (01 Temmuz 2023) An extension of $S$--noetherian rings and modules. International Electronic Journal of Algebra 34 34 1–20.
IEEE P. Jara, “An extension of $S$--noetherian rings and modules”, IEJA, c. 34, sy. 34, ss. 1–20, 2023, doi: 10.24330/ieja.1300716.
ISNAD Jara, Pascual. “An Extension of $S$--Noetherian Rings and Modules”. International Electronic Journal of Algebra 34/34 (Temmuz 2023), 1-20. https://doi.org/10.24330/ieja.1300716.
JAMA Jara P. An extension of $S$--noetherian rings and modules. IEJA. 2023;34:1–20.
MLA Jara, Pascual. “An Extension of $S$--Noetherian Rings and Modules”. International Electronic Journal of Algebra, c. 34, sy. 34, 2023, ss. 1-20, doi:10.24330/ieja.1300716.
Vancouver Jara P. An extension of $S$--noetherian rings and modules. IEJA. 2023;34(34):1-20.

Cited By

Totally simple modules
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-024-00759-6