Research Article
BibTex RIS Cite

Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE

Year 2024, Volume: 35 Issue: 35, 108 - 120, 09.01.2024
https://doi.org/10.24330/ieja.1357059
https://izlik.org/JA92GS23KR

Abstract

We consider the BGG category $\O$ of a quantized universal enveloping algebra $U_q(\mathfrak{g})$. It is well-known that $M\otimes N\in \O$ if $M$ or $N$ is finite dimensional. When $\mathfrak{g}$ is simple and of type ADE, we prove in this paper that $M\otimes N\notin \O$ if $M$ and $N$ are both infinite dimensional.

References

  • H. H. Andersen and V. Mazorchuk, Category $\O$ for quantum groups, J. Eur. Math. Soc. (JEMS), 17(2) (2015), 405-431.
  • J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\O$, Grad. Stud. Math., American Math. Soc., 94, 2008.
  • R. Kane, Reflection Groups and Invariant Theory, CMS Books Math./Ouvrages Math. SMC, 5, Springer-Verlag, New York, 2001.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, Lecture Notes in Math., 2264, Springer, Cham, 2020.
  • Z. Wei, Tensor-closed objects in the BGG category of a quantized semisimple Lie algebra, Int. Electron. J. Algebra, 29 (2021), 175-186.

Year 2024, Volume: 35 Issue: 35, 108 - 120, 09.01.2024
https://doi.org/10.24330/ieja.1357059
https://izlik.org/JA92GS23KR

Abstract

References

  • H. H. Andersen and V. Mazorchuk, Category $\O$ for quantum groups, J. Eur. Math. Soc. (JEMS), 17(2) (2015), 405-431.
  • J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\O$, Grad. Stud. Math., American Math. Soc., 94, 2008.
  • R. Kane, Reflection Groups and Invariant Theory, CMS Books Math./Ouvrages Math. SMC, 5, Springer-Verlag, New York, 2001.
  • C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, Lecture Notes in Math., 2264, Springer, Cham, 2020.
  • Z. Wei, Tensor-closed objects in the BGG category of a quantized semisimple Lie algebra, Int. Electron. J. Algebra, 29 (2021), 175-186.
There are 5 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Group Theory and Generalisations, Category Theory, K Theory, Homological Algebra, Pure Mathematics (Other)
Journal Section Research Article
Authors

Zhaoting Wei This is me

Early Pub Date September 8, 2023
Publication Date January 9, 2024
DOI https://doi.org/10.24330/ieja.1357059
IZ https://izlik.org/JA92GS23KR
Published in Issue Year 2024 Volume: 35 Issue: 35

Cite

APA Wei, Z. (2024). Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. International Electronic Journal of Algebra, 35(35), 108-120. https://doi.org/10.24330/ieja.1357059
AMA 1.Wei Z. Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. IEJA. 2024;35(35):108-120. doi:10.24330/ieja.1357059
Chicago Wei, Zhaoting. 2024. “Tensor Products of Infinite Dimensional Modules in the BGG Category of a Quantized Simple Lie Algebra of Type ADE”. International Electronic Journal of Algebra 35 (35): 108-20. https://doi.org/10.24330/ieja.1357059.
EndNote Wei Z (January 1, 2024) Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. International Electronic Journal of Algebra 35 35 108–120.
IEEE [1]Z. Wei, “Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE”, IEJA, vol. 35, no. 35, pp. 108–120, Jan. 2024, doi: 10.24330/ieja.1357059.
ISNAD Wei, Zhaoting. “Tensor Products of Infinite Dimensional Modules in the BGG Category of a Quantized Simple Lie Algebra of Type ADE”. International Electronic Journal of Algebra 35/35 (January 1, 2024): 108-120. https://doi.org/10.24330/ieja.1357059.
JAMA 1.Wei Z. Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. IEJA. 2024;35:108–120.
MLA Wei, Zhaoting. “Tensor Products of Infinite Dimensional Modules in the BGG Category of a Quantized Simple Lie Algebra of Type ADE”. International Electronic Journal of Algebra, vol. 35, no. 35, Jan. 2024, pp. 108-20, doi:10.24330/ieja.1357059.
Vancouver 1.Wei Z. Tensor products of infinite dimensional modules in the BGG category of a quantized simple Lie algebra of type ADE. IEJA [Internet]. 2024 Jan. 1;35(35):108-20. Available from: https://izlik.org/JA92GS23KR