Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 160 - 167, 09.01.2024
https://doi.org/10.24330/ieja.1402947

Öz

Kaynakça

  • K. K. S. Andersen, B. Oliver and J. Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3), 105(1) (2012), 87-152.
  • R. Boltje, R. Kessar and M. Linckelmann, On Picard groups of blocks of finite groups, J. Algebra, 558 (2020), 70-101.
  • H. Ishioka and N. Kunugi, Brauer indecomposability of Scott modules, J. Algebra, 470 (2017), 441-449.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal $2$-blocks with dihedral defect groups, Math. Z., 294(1-2) (2020), 639-666.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal blocks with generalised quaternion defect groups, J. Algebra, 558 (2020), 523-533.
  • L. Puig, On the Local Structure of Morita and Rickard Equivalences Between Brauer Blocks, Progr. Math., 178, Birkhauser Verlag, Basel, vi+261 pp, 1999.
  • R. Rouquier, The derived category of blocks with cyclic defect groups, in: S. König, A.~Zimmermann (Eds.), Derived equivalences for group rings, in: Lecture Notes in Math., 1685 (1998), Springer-Verlag, Berlin, 199-220.

The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups

Yıl 2024, , 160 - 167, 09.01.2024
https://doi.org/10.24330/ieja.1402947

Öz

Let $k$ be an algebraically closed field of characteristic $2$, let $G$ be a finite group and let $B$ be the principal $2$-block of $kG$ with a dihedral or a generalised quaternion defect group $P$. Let also $\calT(B)$ denote the group of splendid Morita auto-equivalences of $B$. We show that
\begin{align*}
\calT(B)\cong \Out_P(A)\rtimes \Out(P,\calF),
\end{align*}
where $\Out(P,\calF)$ is the group of outer automorphisms of $P$ which stabilize the fusion system $\calF$ of $G$ on $P$ and $\Out_P(A)$ is the group of algebra automorphisms of a source algebra $A$ of $B$ fixing $P$ modulo inner automorphisms induced by $(A^P)^\times$.

Kaynakça

  • K. K. S. Andersen, B. Oliver and J. Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3), 105(1) (2012), 87-152.
  • R. Boltje, R. Kessar and M. Linckelmann, On Picard groups of blocks of finite groups, J. Algebra, 558 (2020), 70-101.
  • H. Ishioka and N. Kunugi, Brauer indecomposability of Scott modules, J. Algebra, 470 (2017), 441-449.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal $2$-blocks with dihedral defect groups, Math. Z., 294(1-2) (2020), 639-666.
  • S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal blocks with generalised quaternion defect groups, J. Algebra, 558 (2020), 523-533.
  • L. Puig, On the Local Structure of Morita and Rickard Equivalences Between Brauer Blocks, Progr. Math., 178, Birkhauser Verlag, Basel, vi+261 pp, 1999.
  • R. Rouquier, The derived category of blocks with cyclic defect groups, in: S. König, A.~Zimmermann (Eds.), Derived equivalences for group rings, in: Lecture Notes in Math., 1685 (1998), Springer-Verlag, Berlin, 199-220.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Çisil Karagüzel Bu kişi benim

Deniz Yılmaz Bu kişi benim

Erken Görünüm Tarihi 13 Aralık 2023
Yayımlanma Tarihi 9 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Karagüzel, Ç., & Yılmaz, D. (2024). The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. International Electronic Journal of Algebra, 35(35), 160-167. https://doi.org/10.24330/ieja.1402947
AMA Karagüzel Ç, Yılmaz D. The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. IEJA. Ocak 2024;35(35):160-167. doi:10.24330/ieja.1402947
Chicago Karagüzel, Çisil, ve Deniz Yılmaz. “The Group of Splendid Morita Equivalences of Principal 2-Blocks With Dihedral and Generalised Quaternion Defect Groups”. International Electronic Journal of Algebra 35, sy. 35 (Ocak 2024): 160-67. https://doi.org/10.24330/ieja.1402947.
EndNote Karagüzel Ç, Yılmaz D (01 Ocak 2024) The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. International Electronic Journal of Algebra 35 35 160–167.
IEEE Ç. Karagüzel ve D. Yılmaz, “The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups”, IEJA, c. 35, sy. 35, ss. 160–167, 2024, doi: 10.24330/ieja.1402947.
ISNAD Karagüzel, Çisil - Yılmaz, Deniz. “The Group of Splendid Morita Equivalences of Principal 2-Blocks With Dihedral and Generalised Quaternion Defect Groups”. International Electronic Journal of Algebra 35/35 (Ocak 2024), 160-167. https://doi.org/10.24330/ieja.1402947.
JAMA Karagüzel Ç, Yılmaz D. The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. IEJA. 2024;35:160–167.
MLA Karagüzel, Çisil ve Deniz Yılmaz. “The Group of Splendid Morita Equivalences of Principal 2-Blocks With Dihedral and Generalised Quaternion Defect Groups”. International Electronic Journal of Algebra, c. 35, sy. 35, 2024, ss. 160-7, doi:10.24330/ieja.1402947.
Vancouver Karagüzel Ç, Yılmaz D. The group of splendid Morita equivalences of principal 2-blocks with dihedral and generalised quaternion defect groups. IEJA. 2024;35(35):160-7.