Let $\mathfrak{R}$ be a prime ring of characteristic different from $2$, $\mathcal{Q}_r^m$ be its maximal right ring of quotients, $\mathcal{C}$ be its extended centroid and $\omega(s_1,\ldots,s_n)$ be a noncentral multilinear polynomial over $\mathcal{C}$. Suppose that $\mathcal{H}_1$, $\mathcal{H}_2$ and $\mathcal{H}_3$ are three $X$-generalized derivations on $\mathfrak{R}$. If $$\mathcal{H}_1\bigg(\mathcal{H}_2(\omega(s_1,\ldots,s_n))\omega(s_1,\ldots,s_n)\bigg)=\mathcal{H}_3(\omega(s_1,\ldots,s_n)^2)$$ for all $s_1,\ldots,s_n\in \mathfrak{R}$, then we detail all potential configurations of the maps $\mathcal{H}_1, \mathcal{H}_2$ and $\mathcal{H}_3$.
Generalized derivation $X$-generalized derivation extended centroid multilinear polynomial prime ring
| Primary Language | English |
|---|---|
| Subjects | Algebra and Number Theory |
| Journal Section | Research Article |
| Authors | |
| Submission Date | September 3, 2024 |
| Acceptance Date | January 25, 2025 |
| Early Pub Date | February 25, 2025 |
| Publication Date | January 10, 2026 |
| Published in Issue | Year 2026 Volume: 39 Issue: 39 |