Research Article
BibTex RIS Cite

Year 2026, Volume: 39 Issue: 39, 81 - 90, 10.01.2026
https://doi.org/10.24330/ieja.1725123
https://izlik.org/JA86ZE95RM

Abstract

References

  • E. Albas, On $\tau$-centralizers of semiprime rings, Siberian Math. J., 48(2) (2007), 191-196.
  • M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104(4) (1988), 1003-1006.
  • M. Bresar, Jordan derivations revisited, Math. Proc. Cambridge Philos. Soc., 139(3) (2005), 411-425.
  • M. Bresar and J. Vukman, Jordan $(\Theta,\phi)$-derivations, Glas. Mat. Ser. III, 26(46)(1-2) (1991), 13-17.
  • A. Fosner and W. Jing, A note on Jordan derivations of triangular rings, Aequationes Math., 94(2) (2020), 277-285.
  • I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
  • B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 120(3) (1996), 455-473.
  • A. Nakajima, Note on generalized Jordan derivations associate with Hochschild $2$-cocycles of rings, Turkish J. Math., 30(4) (2006), 403-411.
  • A. M. Peralta and B. Russo, Automatic continuity of derivations on $C^*$-algebras and $JB^*$-triples, J. Algebra, 399 (2014), 960-977.
  • M. F. Smiley, Jordan homomorphisms onto prime rings, Proc. Amer. Math. Soc., 8 (1957), 426-429.
  • J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chinese Ser.), 41(1) (1998), 205-212.
  • J. Zhou, Characterizations of generalized derivations associated with Hochschild $2$-cocycles and higher derivations, Quaest. Math., 39(6) (2016), 845-862.
  • A. Zivari-Kazempour, Linear maps which are $\theta$-centralizers at zero or identity products, Commun. Korean Math. Soc., 40(1) (2025), 125-136.
  • A. Zivari-Kazempour, Characterizations of $n$-Jordan multipliers on rings, J. Mahani Math. Res., 14(1) (2025), 63-72.

Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings

Year 2026, Volume: 39 Issue: 39, 81 - 90, 10.01.2026
https://doi.org/10.24330/ieja.1725123
https://izlik.org/JA86ZE95RM

Abstract

In this paper, we characterize $(\sigma,\tau)$-generalized Jordan derivations from a ring $R$ into an $S$-bimodule $X$, where $\sigma,\tau \colon R\longrightarrow S$ are ring homomorphisms. Our result covers a known result due to Nakajima [Turkish J. Math., 30 (2006), 403-411].

References

  • E. Albas, On $\tau$-centralizers of semiprime rings, Siberian Math. J., 48(2) (2007), 191-196.
  • M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104(4) (1988), 1003-1006.
  • M. Bresar, Jordan derivations revisited, Math. Proc. Cambridge Philos. Soc., 139(3) (2005), 411-425.
  • M. Bresar and J. Vukman, Jordan $(\Theta,\phi)$-derivations, Glas. Mat. Ser. III, 26(46)(1-2) (1991), 13-17.
  • A. Fosner and W. Jing, A note on Jordan derivations of triangular rings, Aequationes Math., 94(2) (2020), 277-285.
  • I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
  • B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 120(3) (1996), 455-473.
  • A. Nakajima, Note on generalized Jordan derivations associate with Hochschild $2$-cocycles of rings, Turkish J. Math., 30(4) (2006), 403-411.
  • A. M. Peralta and B. Russo, Automatic continuity of derivations on $C^*$-algebras and $JB^*$-triples, J. Algebra, 399 (2014), 960-977.
  • M. F. Smiley, Jordan homomorphisms onto prime rings, Proc. Amer. Math. Soc., 8 (1957), 426-429.
  • J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chinese Ser.), 41(1) (1998), 205-212.
  • J. Zhou, Characterizations of generalized derivations associated with Hochschild $2$-cocycles and higher derivations, Quaest. Math., 39(6) (2016), 845-862.
  • A. Zivari-Kazempour, Linear maps which are $\theta$-centralizers at zero or identity products, Commun. Korean Math. Soc., 40(1) (2025), 125-136.
  • A. Zivari-Kazempour, Characterizations of $n$-Jordan multipliers on rings, J. Mahani Math. Res., 14(1) (2025), 63-72.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Abbas Zivari-kazempour

Submission Date March 22, 2025
Acceptance Date June 2, 2025
Early Pub Date June 23, 2025
Publication Date January 10, 2026
DOI https://doi.org/10.24330/ieja.1725123
IZ https://izlik.org/JA86ZE95RM
Published in Issue Year 2026 Volume: 39 Issue: 39

Cite

APA Zivari-kazempour, A. (2026). Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings. International Electronic Journal of Algebra, 39(39), 81-90. https://doi.org/10.24330/ieja.1725123
AMA 1.Zivari-kazempour A. Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings. IEJA. 2026;39(39):81-90. doi:10.24330/ieja.1725123
Chicago Zivari-kazempour, Abbas. 2026. “Characterizations of $(\sigma,\tau)$-Generalized Jordan Derivations on Prime Rings”. International Electronic Journal of Algebra 39 (39): 81-90. https://doi.org/10.24330/ieja.1725123.
EndNote Zivari-kazempour A (January 1, 2026) Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings. International Electronic Journal of Algebra 39 39 81–90.
IEEE [1]A. Zivari-kazempour, “Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings”, IEJA, vol. 39, no. 39, pp. 81–90, Jan. 2026, doi: 10.24330/ieja.1725123.
ISNAD Zivari-kazempour, Abbas. “Characterizations of $(\sigma,\tau)$-Generalized Jordan Derivations on Prime Rings”. International Electronic Journal of Algebra 39/39 (January 1, 2026): 81-90. https://doi.org/10.24330/ieja.1725123.
JAMA 1.Zivari-kazempour A. Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings. IEJA. 2026;39:81–90.
MLA Zivari-kazempour, Abbas. “Characterizations of $(\sigma,\tau)$-Generalized Jordan Derivations on Prime Rings”. International Electronic Journal of Algebra, vol. 39, no. 39, Jan. 2026, pp. 81-90, doi:10.24330/ieja.1725123.
Vancouver 1.Zivari-kazempour A. Characterizations of $(\sigma,\tau)$-generalized Jordan derivations on prime rings. IEJA [Internet]. 2026 Jan. 1;39(39):81-90. Available from: https://izlik.org/JA86ZE95RM