Research Article
BibTex RIS Cite

Year 2026, Volume: 39 Issue: 39, 116 - 120, 10.01.2026
https://doi.org/10.24330/ieja.1747271

Abstract

References

  • R. Bastos, C. Monetta and P. Shumyatsky, A criterion for metanilpotency of a finite group, J. Group Theory, 21(4) (2018), 713-718.
  • R. Bastos and P. Shumyatsky, A sufficient condition for nilpotency of the commutator subgroup, Sib. Math. J., 57(5) (2016), 762-763.
  • B. Baumslag and J. Wiegold, A suffcient condition for nilpotency in a finite group, (2014), arXiv:1411.2877 [math.GR].
  • W. Guo and A. N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory, 18(2) (2015), 191-200.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967.
  • X. Li, D. Lei and Y. Gao, The order of the product of two elements, Indian J. Pure Appl. Math., 53(2) (2022), 372-374.
  • V. S. Monakhov, The nilpotency criterion for the derived subgroup of a finite group, Probl. Fiz. Mat. Tekh., 3(32) (2017), 58-60.
  • V. S. Monakhov, A metanilpotency criterion for a finite solvable group, Proc. Steklov Inst. Math., 304(suppl. 1) (2019), 141-143.
  • D. J. S. Robinson, A Course in the Theory of Groups, Second edition, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996.
  • A. N. Skiba, On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups, J. Algebra, 436 (2015), 1-16.
  • A. N. Skiba, A generalization of a Hall theorem, J. Algebra Appl., 15(5) (2016), 1650085 (13 pp).
  • A. N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3) (2016), 281-309.
  • A. N. Skiba, Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups, J. Algebra, 495 (2018), 114-129.
  • M. Suzuki, Group Theory II, Fundamental Principles of Mathematical Sciences, 248, Springer-Verlag, New York, 1986.

A note on $\sigma$-nilpotency of finite groups

Year 2026, Volume: 39 Issue: 39, 116 - 120, 10.01.2026
https://doi.org/10.24330/ieja.1747271

Abstract

Let $\sigma=\{\sigma_i\mid i\in I\}$ be some partition of the set $\mathbb{P}$ of all primes, and $\sigma(n) =\{\sigma_i\mid i\in I, \sigma_i\cap\pi(n)\neq\emptyset\}$ for any integer $n$. A group $G$ is called $\sigma$-primary if either $G =1$ or $|\sigma(G)| =1$. A group $G$ is $\sigma$-nilpotent if $(H/K) \rtimes(G/C_G(H/K))$ is $\sigma$-primary for every chief factor $H/K$ of $G$. In this note, we prove that $G$ is $\sigma$-nilpotent if and only if $G$ is a $\sigma$-full group and $\pi(|xy|)=\pi(|x||y|)$ for any two elements $x,y\in G$ such that $\sigma(|x|)\cap\sigma(|y|)=\emptyset$.

References

  • R. Bastos, C. Monetta and P. Shumyatsky, A criterion for metanilpotency of a finite group, J. Group Theory, 21(4) (2018), 713-718.
  • R. Bastos and P. Shumyatsky, A sufficient condition for nilpotency of the commutator subgroup, Sib. Math. J., 57(5) (2016), 762-763.
  • B. Baumslag and J. Wiegold, A suffcient condition for nilpotency in a finite group, (2014), arXiv:1411.2877 [math.GR].
  • W. Guo and A. N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory, 18(2) (2015), 191-200.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967.
  • X. Li, D. Lei and Y. Gao, The order of the product of two elements, Indian J. Pure Appl. Math., 53(2) (2022), 372-374.
  • V. S. Monakhov, The nilpotency criterion for the derived subgroup of a finite group, Probl. Fiz. Mat. Tekh., 3(32) (2017), 58-60.
  • V. S. Monakhov, A metanilpotency criterion for a finite solvable group, Proc. Steklov Inst. Math., 304(suppl. 1) (2019), 141-143.
  • D. J. S. Robinson, A Course in the Theory of Groups, Second edition, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996.
  • A. N. Skiba, On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups, J. Algebra, 436 (2015), 1-16.
  • A. N. Skiba, A generalization of a Hall theorem, J. Algebra Appl., 15(5) (2016), 1650085 (13 pp).
  • A. N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3) (2016), 281-309.
  • A. N. Skiba, Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups, J. Algebra, 495 (2018), 114-129.
  • M. Suzuki, Group Theory II, Fundamental Principles of Mathematical Sciences, 248, Springer-Verlag, New York, 1986.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Youxin Li This is me

Xuecheng Zhong This is me

Wei Meng

Jiakuan Lu

Submission Date January 17, 2025
Acceptance Date May 31, 2025
Early Pub Date July 21, 2025
Publication Date January 10, 2026
Published in Issue Year 2026 Volume: 39 Issue: 39

Cite

APA Li, Y., Zhong, X., Meng, W., Lu, J. (2026). A note on $\sigma$-nilpotency of finite groups. International Electronic Journal of Algebra, 39(39), 116-120. https://doi.org/10.24330/ieja.1747271
AMA Li Y, Zhong X, Meng W, Lu J. A note on $\sigma$-nilpotency of finite groups. IEJA. January 2026;39(39):116-120. doi:10.24330/ieja.1747271
Chicago Li, Youxin, Xuecheng Zhong, Wei Meng, and Jiakuan Lu. “A Note on $\sigma$-Nilpotency of Finite Groups”. International Electronic Journal of Algebra 39, no. 39 (January 2026): 116-20. https://doi.org/10.24330/ieja.1747271.
EndNote Li Y, Zhong X, Meng W, Lu J (January 1, 2026) A note on $\sigma$-nilpotency of finite groups. International Electronic Journal of Algebra 39 39 116–120.
IEEE Y. Li, X. Zhong, W. Meng, and J. Lu, “A note on $\sigma$-nilpotency of finite groups”, IEJA, vol. 39, no. 39, pp. 116–120, 2026, doi: 10.24330/ieja.1747271.
ISNAD Li, Youxin et al. “A Note on $\sigma$-Nilpotency of Finite Groups”. International Electronic Journal of Algebra 39/39 (January2026), 116-120. https://doi.org/10.24330/ieja.1747271.
JAMA Li Y, Zhong X, Meng W, Lu J. A note on $\sigma$-nilpotency of finite groups. IEJA. 2026;39:116–120.
MLA Li, Youxin et al. “A Note on $\sigma$-Nilpotency of Finite Groups”. International Electronic Journal of Algebra, vol. 39, no. 39, 2026, pp. 116-20, doi:10.24330/ieja.1747271.
Vancouver Li Y, Zhong X, Meng W, Lu J. A note on $\sigma$-nilpotency of finite groups. IEJA. 2026;39(39):116-20.