Araştırma Makalesi
BibTex RIS Kaynak Göster

FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS

Yıl 2017, , 103 - 120, 17.01.2017
https://doi.org/10.24330/ieja.296155

Öz

In this paper we study some classes of rings which have a finite
lattice of preradicals. We characterize commutative rings with this condition as
finite representation type rings, i.e., artinian principal ideal rings. In general,
it is easy to see that the lattice of preradicals of a left pure semisimple ring
is a set, but it may be infinite. In fact, for a finite dimensional path algebra
Λ over an algebraically closed field we prove that Λ-pr is finite if and only if
its quiver is a disjoint union of finite quivers of type An; hence there are path
algebras of finite representation type such that its lattice of preradicals is an
infinite set. As an example, we describe the lattice of preradicals over Λ = kQ
when Q is of type An and it has the canonical orientation

Kaynakça

  • [1] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory
  • of Associative Algebras, Vol.1, London Mathematical Society Student
  • Texts, 65, Cambridge University Press, Cambridge, 2006.
  • [2] M. Auslander, Representation theory of Artin algebras II, Comm. Algebra, 1
  • (1974), 269–310.
  • [3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras,
  • Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1997.
  • [4] L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lecture
  • Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York,1982.
  • [5] G. Birkhoff, Lattice Theory, Colloquium Publications XXV, American Mathematical
  • Society, New York, 1948.
  • [
  • [6] D. Eisenbud and P. Griffith, The structure of serial rings, Pacific J. Math., 36(1971), 109–121.
  • [7] R. Fern´andez-Alonso and S. Gavito, The lattice of preradicals over local uniserial
  • rings, J. Algebra Appl., 5(6) (2006), 731–746.
  • [8] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71–103.
  • [9] G. Gr¨atzer, General Lattice Theory, Birkh¨auser Verlag, Basel, 2003.
  • [10] L. Gruson and C. U. Jensen, Deux applications de la notion de L-dimension,
  • C. R. Acad. Sci. Paris, S´er. A-B, 282(1) (1976), 23–24.
  • [11] B. Huisgen-Zimmermann, Purity, algebraic compactness, direct sum decompositions
  • and representation type, Infinite length modules, Trends Math.,(2000), 331–367.
  • [12] F. Raggi, J. R. Montes, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The
  • lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533–1544.
  • [13] F. Raggi, J. R´ıos, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The lattice
  • structure of preradicals II: Partitions, J. Algebra Appl., 1(2) (2002), 201–214.
  • [14] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole
  • Advanced Books and Software, Monterey, CA, 1986.
  • [15] B. Stenstr¨om, Rings of Quotients, Die Grundlehrem der Mathematischen Wissenschaften
  • 217, Springer-Verlag, New York-Heidelberg, 1975.
  • [16] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations
  • of rings of pure global dimension zero, Trans. Amer. Math. Soc., 320(2)
  • (1990), 695–711.
Yıl 2017, , 103 - 120, 17.01.2017
https://doi.org/10.24330/ieja.296155

Öz

Kaynakça

  • [1] I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory
  • of Associative Algebras, Vol.1, London Mathematical Society Student
  • Texts, 65, Cambridge University Press, Cambridge, 2006.
  • [2] M. Auslander, Representation theory of Artin algebras II, Comm. Algebra, 1
  • (1974), 269–310.
  • [3] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras,
  • Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1997.
  • [4] L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lecture
  • Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York,1982.
  • [5] G. Birkhoff, Lattice Theory, Colloquium Publications XXV, American Mathematical
  • Society, New York, 1948.
  • [
  • [6] D. Eisenbud and P. Griffith, The structure of serial rings, Pacific J. Math., 36(1971), 109–121.
  • [7] R. Fern´andez-Alonso and S. Gavito, The lattice of preradicals over local uniserial
  • rings, J. Algebra Appl., 5(6) (2006), 731–746.
  • [8] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71–103.
  • [9] G. Gr¨atzer, General Lattice Theory, Birkh¨auser Verlag, Basel, 2003.
  • [10] L. Gruson and C. U. Jensen, Deux applications de la notion de L-dimension,
  • C. R. Acad. Sci. Paris, S´er. A-B, 282(1) (1976), 23–24.
  • [11] B. Huisgen-Zimmermann, Purity, algebraic compactness, direct sum decompositions
  • and representation type, Infinite length modules, Trends Math.,(2000), 331–367.
  • [12] F. Raggi, J. R. Montes, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The
  • lattice structure of preradicals, Comm. Algebra, 30(3) (2002), 1533–1544.
  • [13] F. Raggi, J. R´ıos, H. Rinc´on, R. Fern´andez-Alonso and C. Signoret, The lattice
  • structure of preradicals II: Partitions, J. Algebra Appl., 1(2) (2002), 201–214.
  • [14] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole
  • Advanced Books and Software, Monterey, CA, 1986.
  • [15] B. Stenstr¨om, Rings of Quotients, Die Grundlehrem der Mathematischen Wissenschaften
  • 217, Springer-Verlag, New York-Heidelberg, 1975.
  • [16] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations
  • of rings of pure global dimension zero, Trans. Amer. Math. Soc., 320(2)
  • (1990), 695–711.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Rogelio Fernandez-alonso Bu kişi benim

Dolors Herbera

Yayımlanma Tarihi 17 Ocak 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Fernandez-alonso, R., & Herbera, D. (2017). FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. International Electronic Journal of Algebra, 21(21), 103-120. https://doi.org/10.24330/ieja.296155
AMA Fernandez-alonso R, Herbera D. FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. IEJA. Ocak 2017;21(21):103-120. doi:10.24330/ieja.296155
Chicago Fernandez-alonso, Rogelio, ve Dolors Herbera. “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”. International Electronic Journal of Algebra 21, sy. 21 (Ocak 2017): 103-20. https://doi.org/10.24330/ieja.296155.
EndNote Fernandez-alonso R, Herbera D (01 Ocak 2017) FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. International Electronic Journal of Algebra 21 21 103–120.
IEEE R. Fernandez-alonso ve D. Herbera, “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”, IEJA, c. 21, sy. 21, ss. 103–120, 2017, doi: 10.24330/ieja.296155.
ISNAD Fernandez-alonso, Rogelio - Herbera, Dolors. “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”. International Electronic Journal of Algebra 21/21 (Ocak 2017), 103-120. https://doi.org/10.24330/ieja.296155.
JAMA Fernandez-alonso R, Herbera D. FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. IEJA. 2017;21:103–120.
MLA Fernandez-alonso, Rogelio ve Dolors Herbera. “FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS”. International Electronic Journal of Algebra, c. 21, sy. 21, 2017, ss. 103-20, doi:10.24330/ieja.296155.
Vancouver Fernandez-alonso R, Herbera D. FINITE LATTICES OF PRERADICALS AND FINITE REPRESENTATION TYPE RINGS. IEJA. 2017;21(21):103-20.