Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 131 - 142, 11.01.2018
https://doi.org/10.24330/ieja.373654

Öz

Kaynakça

  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210(2) (2007), 437-445.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • I. Emmanouil, On the niteness of Gorenstein homological dimensions, J. Al- gebra, 372 (2012), 376-396.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 3, Walter de Gruyter & Co., Berlin, 2000.
  • R. M. Fossum, P. A. Grith and I. Reiten, Trivial Extensions of Abelian Cate- gories, Homological algebra of trivial extensions of abelian categories with ap- plications to ring theory, Lecture Notes in Mathematics, 456, Springer-Verlag, Berlin-New York, 1975.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jrgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • S. Sather-Wagstaff, T. Sharif and D. White, Tate cohomology with respect to semidualizing modules, J. Algebra, 324(9) (2010), 2336-2368.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974.
  • C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994.
  • D. White, Gorenstein projective dimension with respect to a semidualizing mod- ule, J. Commut. Algebra, 2(1) (2010), 111-137.
  • G. Zhao and J. Sun, Global dimensions of rings with respect to a semidualizing module, avilable from https://arxiv.org/abs/1307.0628.

Gorenstein homological dimensions with respect to a semidualizing module

Yıl 2018, , 131 - 142, 11.01.2018
https://doi.org/10.24330/ieja.373654

Öz

In this paper, let R be a commutative ring and C a semidualizing
module. We investigate the (weak) C-Gorenstein global dimension of R
and we get a simple formula to compute the C-Gorenstein global dimension.
Moreover, we compare it with the classical (weak) global dimension of R and
get the relations between them. At last, we compare the weak C-Gorenstein
global dimension with the C-Gorenstein global dimension and we get that they
are equal when R is Noetherian.

Kaynakça

  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210(2) (2007), 437-445.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • I. Emmanouil, On the niteness of Gorenstein homological dimensions, J. Al- gebra, 372 (2012), 376-396.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 3, Walter de Gruyter & Co., Berlin, 2000.
  • R. M. Fossum, P. A. Grith and I. Reiten, Trivial Extensions of Abelian Cate- gories, Homological algebra of trivial extensions of abelian categories with ap- plications to ring theory, Lecture Notes in Mathematics, 456, Springer-Verlag, Berlin-New York, 1975.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jrgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • S. Sather-Wagstaff, T. Sharif and D. White, Tate cohomology with respect to semidualizing modules, J. Algebra, 324(9) (2010), 2336-2368.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974.
  • C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994.
  • D. White, Gorenstein projective dimension with respect to a semidualizing mod- ule, J. Commut. Algebra, 2(1) (2010), 111-137.
  • G. Zhao and J. Sun, Global dimensions of rings with respect to a semidualizing module, avilable from https://arxiv.org/abs/1307.0628.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Zhen Zhang Bu kişi benim

Jiaqun Wei Bu kişi benim

Yayımlanma Tarihi 11 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Zhang, Z., & Wei, J. (2018). Gorenstein homological dimensions with respect to a semidualizing module. International Electronic Journal of Algebra, 23(23), 131-142. https://doi.org/10.24330/ieja.373654
AMA Zhang Z, Wei J. Gorenstein homological dimensions with respect to a semidualizing module. IEJA. Ocak 2018;23(23):131-142. doi:10.24330/ieja.373654
Chicago Zhang, Zhen, ve Jiaqun Wei. “Gorenstein Homological Dimensions With Respect to a Semidualizing Module”. International Electronic Journal of Algebra 23, sy. 23 (Ocak 2018): 131-42. https://doi.org/10.24330/ieja.373654.
EndNote Zhang Z, Wei J (01 Ocak 2018) Gorenstein homological dimensions with respect to a semidualizing module. International Electronic Journal of Algebra 23 23 131–142.
IEEE Z. Zhang ve J. Wei, “Gorenstein homological dimensions with respect to a semidualizing module”, IEJA, c. 23, sy. 23, ss. 131–142, 2018, doi: 10.24330/ieja.373654.
ISNAD Zhang, Zhen - Wei, Jiaqun. “Gorenstein Homological Dimensions With Respect to a Semidualizing Module”. International Electronic Journal of Algebra 23/23 (Ocak 2018), 131-142. https://doi.org/10.24330/ieja.373654.
JAMA Zhang Z, Wei J. Gorenstein homological dimensions with respect to a semidualizing module. IEJA. 2018;23:131–142.
MLA Zhang, Zhen ve Jiaqun Wei. “Gorenstein Homological Dimensions With Respect to a Semidualizing Module”. International Electronic Journal of Algebra, c. 23, sy. 23, 2018, ss. 131-42, doi:10.24330/ieja.373654.
Vancouver Zhang Z, Wei J. Gorenstein homological dimensions with respect to a semidualizing module. IEJA. 2018;23(23):131-42.