Sh. Ayupov, K. Kudaybergenov, B. Omirov and K. Zhao, Semisimple Leibniz
algebras, their derivations and automorphisms, Linear Multilinear Algebra,
(2019), accepted.
D. W. Barnes, On Levi's theorem for Leibniz algebras, Bull. Aust. Math. Soc.,
86(2) (2012), 184-185.
A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk
SSSR, 165 (1965), 471-473.
A. Ja. Bloh, A certain generalization of the concept of Lie algebra, Moskov.
Gos. Ped. Inst. Ucen. Zap., 375 (1971), 9-20 (in Russian).
A. S. Dzhumadil'daev and S. A. Abdykassymova, Leibniz algebras in characteristic p, C. R. Acad. Sci. Paris Ser. I Math., 332(12) (2001), 1047-1052.
N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers, New York-London, 1962.
M. K. Kinyon and A.Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123(3) (2001),
525-550.
K. Kudaybergenov, M. Ladra and B. Omirov, On Levi-Malcev theorem for
Leibniz algebras, Linear Multilinear Algebra, 67(7) (2019), 1471-1482.
J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301, Springer-
Verlag, Berlin, 1992.
J.-L. Loday, Une version non commutative des algebres de Lie: les algebres
de Leibniz [A noncommutative version of Lie algebras: the Leibniz algebras],
Enseign. Math., 39(2) (1993), 269-293.
G. Mason and G. Yamskulna, Leibniz algebras and Lie algebras, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 063 (10 pp).
T. Pirashvili, On Leibniz homology, Ann. Inst. Fourier (Grenoble), 44(2)
(1994), 401-411.
Z. X. Wan, Lie Algebras, International Series of Monographs in Pure and
Applied Mathematics, Vol. 104, Pergamon Press, Oxford-New York-Toronto,
Ont., 1975.
Sh. Ayupov, K. Kudaybergenov, B. Omirov and K. Zhao, Semisimple Leibniz
algebras, their derivations and automorphisms, Linear Multilinear Algebra,
(2019), accepted.
D. W. Barnes, On Levi's theorem for Leibniz algebras, Bull. Aust. Math. Soc.,
86(2) (2012), 184-185.
A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk
SSSR, 165 (1965), 471-473.
A. Ja. Bloh, A certain generalization of the concept of Lie algebra, Moskov.
Gos. Ped. Inst. Ucen. Zap., 375 (1971), 9-20 (in Russian).
A. S. Dzhumadil'daev and S. A. Abdykassymova, Leibniz algebras in characteristic p, C. R. Acad. Sci. Paris Ser. I Math., 332(12) (2001), 1047-1052.
N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers, New York-London, 1962.
M. K. Kinyon and A.Weinstein, Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123(3) (2001),
525-550.
K. Kudaybergenov, M. Ladra and B. Omirov, On Levi-Malcev theorem for
Leibniz algebras, Linear Multilinear Algebra, 67(7) (2019), 1471-1482.
J.-L. Loday, Cyclic Homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301, Springer-
Verlag, Berlin, 1992.
J.-L. Loday, Une version non commutative des algebres de Lie: les algebres
de Leibniz [A noncommutative version of Lie algebras: the Leibniz algebras],
Enseign. Math., 39(2) (1993), 269-293.
G. Mason and G. Yamskulna, Leibniz algebras and Lie algebras, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), 063 (10 pp).
T. Pirashvili, On Leibniz homology, Ann. Inst. Fourier (Grenoble), 44(2)
(1994), 401-411.
Z. X. Wan, Lie Algebras, International Series of Monographs in Pure and
Applied Mathematics, Vol. 104, Pergamon Press, Oxford-New York-Toronto,
Ont., 1975.
Turdibaev, R. (2019). BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS. International Electronic Journal of Algebra, 26(26), 122-130. https://doi.org/10.24330/ieja.587009
AMA
Turdibaev R. BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS. IEJA. Temmuz 2019;26(26):122-130. doi:10.24330/ieja.587009
Chicago
Turdibaev, Rustam. “BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra 26, sy. 26 (Temmuz 2019): 122-30. https://doi.org/10.24330/ieja.587009.
EndNote
Turdibaev R (01 Temmuz 2019) BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS. International Electronic Journal of Algebra 26 26 122–130.
IEEE
R. Turdibaev, “BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS”, IEJA, c. 26, sy. 26, ss. 122–130, 2019, doi: 10.24330/ieja.587009.
ISNAD
Turdibaev, Rustam. “BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra 26/26 (Temmuz 2019), 122-130. https://doi.org/10.24330/ieja.587009.
JAMA
Turdibaev R. BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS. IEJA. 2019;26:122–130.
MLA
Turdibaev, Rustam. “BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra, c. 26, sy. 26, 2019, ss. 122-30, doi:10.24330/ieja.587009.
Vancouver
Turdibaev R. BIPARTITE GRAPHS AND THE STRUCTURE OF FINITE-DIMENSIONAL SEMISIMPLE LEIBNIZ ALGEBRAS. IEJA. 2019;26(26):122-30.