BibTex RIS Cite

ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS

Year 2013, Volume: 14 Issue: 14, 44 - 52, 01.12.2013

Abstract

Let G be a finite group, p the smallest prime dividing the order
of G and P a Sylow p-subgroup of G with the smallest generator number d.
We consider such a set Md(P) = {P1, P2, . . . , Pd} of maximal subgroups of P
such that ∩di=1Pi = Φ(P). Groups with certain s-permutably embedded and
weakly c-normal subgroups of prime power order are studied. We present some
sufficient conditions for a group to be p-nilpotent or p-supersolvable.

References

  • K. Al-Sharo, On some maximal S-quasinormal subgroups of finite groups, Beitr¨age Algebra Geom., 49 (2008), 227-232.
  • M. Asaad and A. A. Heliel, On S-quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra, 165 (2001), 129-135.
  • A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127 (1998), 113-118.
  • W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 132.
  • D. Gorenstein, Finite Group, 2nd Edition. Chelsea Publishing Co., New York, X. Y. Guo and K. P. Shum, On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups, Arch. Math., 80 (2003), 561-569.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wis- senschaften, Band 134, Springer-Verlag, Berlin, 1967.
  • O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., (1962), 205-221.
  • S. Li and X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36 (2008), 2333-2340.
  • D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics vol. 80, Springer-Verlag, New York, 1982.
  • P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285-293.
  • S.Srinivasan, Two sufficient conditions for supersolvability of finite groups, Is- rael J. Math., 35 (1980), 210-214.
  • A. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (2007), 192-209.
  • J. G. Thompson, Normal p-complements for finite groups, J. Algebra, 1 (1964), 46.
  • Y. Wang, c-normality of groups and its properties, J. Algebra, 180 (1996), 965. Y. Wang,
  • Finite groups with some subgroups of Sylow subgroups c- supplemented, J. Algebra, 224 (2000), 464-478.
  • H. Wei and Y. Wang, On c*-normality and its properties, J. Group Theory, 10 (2007), 211-223.
  • L. Zhu, W. Guo and K. Shum, Weakly c-normal subgroup of finite groups and their properties, Comm. Algebra, 30 (2002), 5505-5512.
  • Guo Zhong and Liying Yang School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, P. R. China e-mails: zhg102003@163.com (Guo Zhong) Xuanlong Ma
  • School of Mathematical Sciences Beijing Normal University, Beijing, P. R. China e-mail: 709725875@qq.com yangliying0308@163.com (Liying Yang) Shixun Lin
  • College of Mathematics and Statistics, Zhaotong University, Zhaotong, P. R. China e-mail: 785238003@qq.com
Year 2013, Volume: 14 Issue: 14, 44 - 52, 01.12.2013

Abstract

References

  • K. Al-Sharo, On some maximal S-quasinormal subgroups of finite groups, Beitr¨age Algebra Geom., 49 (2008), 227-232.
  • M. Asaad and A. A. Heliel, On S-quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra, 165 (2001), 129-135.
  • A. Ballester-Bolinches and M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127 (1998), 113-118.
  • W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 132.
  • D. Gorenstein, Finite Group, 2nd Edition. Chelsea Publishing Co., New York, X. Y. Guo and K. P. Shum, On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups, Arch. Math., 80 (2003), 561-569.
  • B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wis- senschaften, Band 134, Springer-Verlag, Berlin, 1967.
  • O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., (1962), 205-221.
  • S. Li and X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36 (2008), 2333-2340.
  • D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics vol. 80, Springer-Verlag, New York, 1982.
  • P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285-293.
  • S.Srinivasan, Two sufficient conditions for supersolvability of finite groups, Is- rael J. Math., 35 (1980), 210-214.
  • A. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (2007), 192-209.
  • J. G. Thompson, Normal p-complements for finite groups, J. Algebra, 1 (1964), 46.
  • Y. Wang, c-normality of groups and its properties, J. Algebra, 180 (1996), 965. Y. Wang,
  • Finite groups with some subgroups of Sylow subgroups c- supplemented, J. Algebra, 224 (2000), 464-478.
  • H. Wei and Y. Wang, On c*-normality and its properties, J. Group Theory, 10 (2007), 211-223.
  • L. Zhu, W. Guo and K. Shum, Weakly c-normal subgroup of finite groups and their properties, Comm. Algebra, 30 (2002), 5505-5512.
  • Guo Zhong and Liying Yang School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, P. R. China e-mails: zhg102003@163.com (Guo Zhong) Xuanlong Ma
  • School of Mathematical Sciences Beijing Normal University, Beijing, P. R. China e-mail: 709725875@qq.com yangliying0308@163.com (Liying Yang) Shixun Lin
  • College of Mathematics and Statistics, Zhaotong University, Zhaotong, P. R. China e-mail: 785238003@qq.com
There are 20 citations in total.

Details

Other ID JA39DV32SA
Journal Section Articles
Authors

Guo Zhong This is me

Liying Yang This is me

Xuanlong Ma This is me

Shixun Lin This is me

Publication Date December 1, 2013
Published in Issue Year 2013 Volume: 14 Issue: 14

Cite

APA Zhong, G., Yang, L., Ma, X., Lin, S. (2013). ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS. International Electronic Journal of Algebra, 14(14), 44-52.
AMA Zhong G, Yang L, Ma X, Lin S. ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS. IEJA. December 2013;14(14):44-52.
Chicago Zhong, Guo, Liying Yang, Xuanlong Ma, and Shixun Lin. “ON S-PERMUTABLY EMBEDDED AND WEAKLY C-NORMAL SUBGROUPS OF FINITE GROUPS”. International Electronic Journal of Algebra 14, no. 14 (December 2013): 44-52.
EndNote Zhong G, Yang L, Ma X, Lin S (December 1, 2013) ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS. International Electronic Journal of Algebra 14 14 44–52.
IEEE G. Zhong, L. Yang, X. Ma, and S. Lin, “ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS”, IEJA, vol. 14, no. 14, pp. 44–52, 2013.
ISNAD Zhong, Guo et al. “ON S-PERMUTABLY EMBEDDED AND WEAKLY C-NORMAL SUBGROUPS OF FINITE GROUPS”. International Electronic Journal of Algebra 14/14 (December 2013), 44-52.
JAMA Zhong G, Yang L, Ma X, Lin S. ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS. IEJA. 2013;14:44–52.
MLA Zhong, Guo et al. “ON S-PERMUTABLY EMBEDDED AND WEAKLY C-NORMAL SUBGROUPS OF FINITE GROUPS”. International Electronic Journal of Algebra, vol. 14, no. 14, 2013, pp. 44-52.
Vancouver Zhong G, Yang L, Ma X, Lin S. ON s-PERMUTABLY EMBEDDED AND WEAKLY c-NORMAL SUBGROUPS OF FINITE GROUPS. IEJA. 2013;14(14):44-52.