BibTex RIS Cite

ON THE MIN-PROJECTIVE MODULES

Year 2012, Volume: 11 Issue: 11, 1 - 11, 01.06.2012

Abstract

Let R be a commutative ring. An R-module M is called minprojective
if Ext1R(M,RI) = 0, for every simple ideal I. In this paper, we first
give some results of min-projective R-modules on the some specific rings such
as cotorsion rings, von Neumann regular rings and coherent rings. Then we
investigate min-projective covers on universally min-projective rings. Finally,
we deal with some characterizations of min-projective modules over a perfect
ring.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Spriger- Verlag, New York, 1974.
  • N. Q. Ding and L. X. Mao, FP-projective dimensions, Comm. Algebra, 33 (2005), 1153–1170.
  • N. Q. Ding and L. X. Mao, Min-flat modules and min-coherent rings, Comm. Algebra, 36 (2007), 635–650.
  • N. Q. Ding and L. X. Mao, Notes on F P -projective modules and F P -injective modules, Advances in ring theory, 151–166, World Sci.Publ., Hackensack, NJ, N. Q. Ding and L. X. Mao, Notes on the cotorsion modules, Comm. Algebra, (2005), 349–360.
  • E. E. Enochs and M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, New York, 2000.
  • P. A. Guil Asensio and I. Herzog, Left cotorsion rings, Bull. London Math. Soc., 36 (2004) 303-309.
  • T. Y. Lam, A First Course in Non-Commutative Rings, Springer-Verlag, New York, 1991.
  • T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, Berlin, 1999.
  • M. J. Nikmehr, F. Shaveisi and R. Nikandish, n-Projective modules, Algebras, Groups and Geometries, 24 (2007), 447–454.
  • M. J. Nikmehr and F. Shaveisi, T -dimension and (n+1, T )-Projective modules, Southeast Asian Bull. Math., 35 (2011), 1–11.
  • J.J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
  • F. L. Sandomierski, Homological dimensions under change of rings, Math.Z., (1973), 55–65.
  • R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach Publishers, 1991.
  • J. Xu, Flat covers of modules, Lecture Notes in Mathematics, 1643, Berlin, Springer-Verlag, 1996. M. Amini
  • Department of Mathematics Faculty of Science Payame Noor University Sonqor, Iran e-mail: mamini1356@yahoo.com A. Farajzadeh
  • Islamic Azad university Kermanshah Branch, Iran e-mail: faraj1348@yahoo.com S. Bayati
  • Department of Mathematics Faculty of Science Payame Noor University Sonqor, Iran e-mail: s.bayati@gmail.com
Year 2012, Volume: 11 Issue: 11, 1 - 11, 01.06.2012

Abstract

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Spriger- Verlag, New York, 1974.
  • N. Q. Ding and L. X. Mao, FP-projective dimensions, Comm. Algebra, 33 (2005), 1153–1170.
  • N. Q. Ding and L. X. Mao, Min-flat modules and min-coherent rings, Comm. Algebra, 36 (2007), 635–650.
  • N. Q. Ding and L. X. Mao, Notes on F P -projective modules and F P -injective modules, Advances in ring theory, 151–166, World Sci.Publ., Hackensack, NJ, N. Q. Ding and L. X. Mao, Notes on the cotorsion modules, Comm. Algebra, (2005), 349–360.
  • E. E. Enochs and M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, New York, 2000.
  • P. A. Guil Asensio and I. Herzog, Left cotorsion rings, Bull. London Math. Soc., 36 (2004) 303-309.
  • T. Y. Lam, A First Course in Non-Commutative Rings, Springer-Verlag, New York, 1991.
  • T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, Berlin, 1999.
  • M. J. Nikmehr, F. Shaveisi and R. Nikandish, n-Projective modules, Algebras, Groups and Geometries, 24 (2007), 447–454.
  • M. J. Nikmehr and F. Shaveisi, T -dimension and (n+1, T )-Projective modules, Southeast Asian Bull. Math., 35 (2011), 1–11.
  • J.J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
  • F. L. Sandomierski, Homological dimensions under change of rings, Math.Z., (1973), 55–65.
  • R. Wisbauer, Foundation of Module and Ring Theory, Gordon and Breach Publishers, 1991.
  • J. Xu, Flat covers of modules, Lecture Notes in Mathematics, 1643, Berlin, Springer-Verlag, 1996. M. Amini
  • Department of Mathematics Faculty of Science Payame Noor University Sonqor, Iran e-mail: mamini1356@yahoo.com A. Farajzadeh
  • Islamic Azad university Kermanshah Branch, Iran e-mail: faraj1348@yahoo.com S. Bayati
  • Department of Mathematics Faculty of Science Payame Noor University Sonqor, Iran e-mail: s.bayati@gmail.com
There are 17 citations in total.

Details

Other ID JA28DU79AT
Journal Section Articles
Authors

M. Amini This is me

A. Farajzadeh This is me

S. Bayati This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Amini, M., Farajzadeh, A., & Bayati, S. (2012). ON THE MIN-PROJECTIVE MODULES. International Electronic Journal of Algebra, 11(11), 1-11.
AMA Amini M, Farajzadeh A, Bayati S. ON THE MIN-PROJECTIVE MODULES. IEJA. June 2012;11(11):1-11.
Chicago Amini, M., A. Farajzadeh, and S. Bayati. “ON THE MIN-PROJECTIVE MODULES”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 1-11.
EndNote Amini M, Farajzadeh A, Bayati S (June 1, 2012) ON THE MIN-PROJECTIVE MODULES. International Electronic Journal of Algebra 11 11 1–11.
IEEE M. Amini, A. Farajzadeh, and S. Bayati, “ON THE MIN-PROJECTIVE MODULES”, IEJA, vol. 11, no. 11, pp. 1–11, 2012.
ISNAD Amini, M. et al. “ON THE MIN-PROJECTIVE MODULES”. International Electronic Journal of Algebra 11/11 (June 2012), 1-11.
JAMA Amini M, Farajzadeh A, Bayati S. ON THE MIN-PROJECTIVE MODULES. IEJA. 2012;11:1–11.
MLA Amini, M. et al. “ON THE MIN-PROJECTIVE MODULES”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 1-11.
Vancouver Amini M, Farajzadeh A, Bayati S. ON THE MIN-PROJECTIVE MODULES. IEJA. 2012;11(11):1-11.