BibTex RIS Cite

WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY

Year 2010, Volume: 7 Issue: 7, 95 - 101, 01.06.2010

Abstract

Let R be a commutative Noetheran ring, I an ideal of R and M be a finitely generated projective R-module. Let N be an R module and t a non-negative integer such that Extt R(M/IM, N) is weakly Laskerian. Then for any weakly Laskerian submodule U of the first non I-weakly cofinite module HtI(M, N), the R-module HomR(M/IM, HtI(M, N)/U) is weakly Laskerian. As a consequence the set of associated primes of HtI(M, N)/U is finite.

References

  • M. Brodmann and F. Lashgari, A finiteness result for associated primes of local cohomology, Proc. Amer. Math. Soc., 128 (2000), 2851-2853.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
  • M. Brodmann and R. Y. Sharp, Local Cohomology: An algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
  • L. W. Christensen, Gorenstein Dimension, Lecture Notes in Math., 174 (2000).
  • N. T. Cuong and N. V. Hoang, Some finiteness properties of generalized local cohomology modules, East-West J. Math., 7 (2005), 107-115.
  • N. T. Cuong and N. V. Hoang, On the vanishing and the finiteness of supports of generalized local cohomology modules, arXiv:0705.4553v1, (2007).
  • K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc., 133 (2004), 655-660.
  • K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra, 34 (2006), 681-690.
  • K. Divaani-Aazar and M. A. Esmkhani, Artinianess of local cohomology mod- ules of ZD-modules, Comm. Algebra, 33 (2005), 2857-2863.
  • J. Herzog, Komplexe, Aufl¨osungen und Dualitat in der lokalen algebra, Habil- itationsschrift, Universit¨at regensburg, 1970.
  • J. Herzog and N. Zamani, Duality and vanishing of generalized local cohomo- logy, Arch. Math. (Basel), 81 (2003) 512-519.
  • C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry, Res. Nots Math., 2 (1992), 93-108.
  • M. Katzman, An example of an infinite set of associated primes of a local cohomology modules, J. Algebra, 252 (2002), 161-166.
  • G. Lyubeznik, A partial survay of local cohomology, local cohomology and its applications. Lecture notes in Pure and Appl. Math., 228 (2002), 121-154.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diago, 1979.
  • A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett., 7 (2000), 165-176.
  • B. Snapp, Generalized local cohomology and the canonical element conjecture, J. Pure Appl. Algebra, doi:10.1016/j.jpaa. (2007) 07.017.
  • S. Yassemi and M. T. Dibaei, Associated primes and cofiniteness of local co- homology modules, Manuscripta Math., 117 (2005), 199-205.
  • H. Z¨oschinger, Minimax modules, J. Algebra, 102 (1986), 1-32. Naser Zamani Faculty of Science
  • University of Mohaghegh Ardabili Ardabil, Iran
  • e-mail: naserzaka@yahoo.com
Year 2010, Volume: 7 Issue: 7, 95 - 101, 01.06.2010

Abstract

References

  • M. Brodmann and F. Lashgari, A finiteness result for associated primes of local cohomology, Proc. Amer. Math. Soc., 128 (2000), 2851-2853.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
  • M. Brodmann and R. Y. Sharp, Local Cohomology: An algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
  • L. W. Christensen, Gorenstein Dimension, Lecture Notes in Math., 174 (2000).
  • N. T. Cuong and N. V. Hoang, Some finiteness properties of generalized local cohomology modules, East-West J. Math., 7 (2005), 107-115.
  • N. T. Cuong and N. V. Hoang, On the vanishing and the finiteness of supports of generalized local cohomology modules, arXiv:0705.4553v1, (2007).
  • K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc., 133 (2004), 655-660.
  • K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra, 34 (2006), 681-690.
  • K. Divaani-Aazar and M. A. Esmkhani, Artinianess of local cohomology mod- ules of ZD-modules, Comm. Algebra, 33 (2005), 2857-2863.
  • J. Herzog, Komplexe, Aufl¨osungen und Dualitat in der lokalen algebra, Habil- itationsschrift, Universit¨at regensburg, 1970.
  • J. Herzog and N. Zamani, Duality and vanishing of generalized local cohomo- logy, Arch. Math. (Basel), 81 (2003) 512-519.
  • C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry, Res. Nots Math., 2 (1992), 93-108.
  • M. Katzman, An example of an infinite set of associated primes of a local cohomology modules, J. Algebra, 252 (2002), 161-166.
  • G. Lyubeznik, A partial survay of local cohomology, local cohomology and its applications. Lecture notes in Pure and Appl. Math., 228 (2002), 121-154.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diago, 1979.
  • A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett., 7 (2000), 165-176.
  • B. Snapp, Generalized local cohomology and the canonical element conjecture, J. Pure Appl. Algebra, doi:10.1016/j.jpaa. (2007) 07.017.
  • S. Yassemi and M. T. Dibaei, Associated primes and cofiniteness of local co- homology modules, Manuscripta Math., 117 (2005), 199-205.
  • H. Z¨oschinger, Minimax modules, J. Algebra, 102 (1986), 1-32. Naser Zamani Faculty of Science
  • University of Mohaghegh Ardabili Ardabil, Iran
  • e-mail: naserzaka@yahoo.com
There are 21 citations in total.

Details

Other ID JA58NT83PV
Journal Section Articles
Authors

Naser Zamani This is me

Publication Date June 1, 2010
Published in Issue Year 2010 Volume: 7 Issue: 7

Cite

APA Zamani, N. (2010). WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY. International Electronic Journal of Algebra, 7(7), 95-101.
AMA Zamani N. WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY. IEJA. June 2010;7(7):95-101.
Chicago Zamani, Naser. “WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY”. International Electronic Journal of Algebra 7, no. 7 (June 2010): 95-101.
EndNote Zamani N (June 1, 2010) WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY. International Electronic Journal of Algebra 7 7 95–101.
IEEE N. Zamani, “WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY”, IEJA, vol. 7, no. 7, pp. 95–101, 2010.
ISNAD Zamani, Naser. “WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY”. International Electronic Journal of Algebra 7/7 (June 2010), 95-101.
JAMA Zamani N. WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY. IEJA. 2010;7:95–101.
MLA Zamani, Naser. “WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY”. International Electronic Journal of Algebra, vol. 7, no. 7, 2010, pp. 95-101.
Vancouver Zamani N. WEAKLY LASKERIAN, WEAKLY COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY. IEJA. 2010;7(7):95-101.