BibTex RIS Kaynak Göster

TREED DOMAINS

Yıl 2008, Cilt: 3 Sayı: 3, 43 - 57, 01.06.2008

Öz

We establish that treed domains are well behaved in Zafrullah’s sense and have locally polynomial depth 1. For the DW-domains R of Mimouni, such that I−1 6= R for each nontrivial finitely generated ideal I of R, likewise results are proven. We study some special treed domains and show in particular that the Nagata ring of an integral domain R is (locally) divided if and only if R is (locally) divided and quasi-Prüfer. We show that the small finitistic dimension of a local treed domain is 1 and calculate the small finitistic dimension of localizations of polynomial rings over a treed domain.

Kaynakça

  • B. Alfonsi, Grade non-noetherien, Comm. Algebra, 9 (1981), 811–840.
  • D. F. Anderson, D. E. Dobbs and M. Fontana, On treed Nagata rings, J. Pure Appl. Algebra, 61 (1989), 107–122.
  • D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), 353– 363.
  • D. E. Dobbs, Treed domains have grade 1, Int. J. Commut. Rings, 2 (2003), 43–46.
  • M. Fontana, Kaplansky ideal transforms: A survey, in: Advances in commu- tative ring theory (editors D. E. Dobbs, M. Fontana and S. Kabbaj), in: Lect. Notes Pure Appl. Math., vol. 205, Marcel Dekker , (New York-Basel, 1999), pp.271–306.
  • M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Pr¨ufer integral closure, Comm. Algebra, 26 (1998), 1017–1039.
  • M. Fontana, J. A. Huckaba and I. J. Papick, Pr¨ufer domains, Marcel Dekker, New York-Basel, 1997.
  • S. Gabelli and M. Roitman, Maximal divisorial ideals and t-maximal ideals, JP. J. Algebra Number Theory Appl., 4 (2004), 323–336.
  • S. Glaz, Commutative coherent rings, Springer-Verlag, New York-Heidelberg- Berlin, 1989.
  • S. Glaz, On the coherence and weak dimension of the rings RhXi and R(X), Proc. Amer. Math. Soc. 106 (1989), 579-587.
  • S. Glaz and W. V. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977), 325–341. [12] S. Glaz, The weak dimension of Gaussian rings, Proc. Amer. Math. Soc. 133 (2005), 2507–2513.
  • J. R. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137–147.
  • M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. 29 (1974), 55–76.
  • E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divi- sorial, Michigan Math. J. 35 (1988), 291–300.
  • E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra, 17 (1989), 1955–1969.
  • J. A. Huckaba and I. J. Papick, A localization of R[x], Canad. J. Math. 33 (1981), 103–115.
  • D. Katz and L. J. Ratliff, Jr, Two notes on ideal transforms, Math. Proc. Camb. Phil. Soc. 102 (1987), 389–397.
  • J. Iroz and D. E. Rush, Associated prime ideals in non-noetherian rings, Canad. J. Math. 36 (1984), 344–360.
  • B. G. Kang, Pr¨ufer v-multiplication domains and the ring R[X]Nv, J. Algebra, 123 (1989), 151–170.
  • I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, 1970.
  • K. P. McDowell, Pseudo-noetherian rings, Canad. Math. Bull., 19 (1976), 77–84.
  • A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Alge- bra, 33 (2005), 1345–1355.
  • J. Mott and M. Zafrullah, On Pr¨ufer v-multiplication domains, Manuscripta Math., 35 (1981), 1–26.
  • D. G. Northcott, Finite free resolutions, Cambridge University Press, vol 71, Cambridge-London-New York-Melbourne, 1976.
  • B. Olberding, On the structure of stable domains, Comm. Algebra, 30 (2002), 877–895. [27] I. J. Papick, Topologically defined classes of going-down domains, Bull. Amer. Math. Soc, 81 (1975), 718–721.
  • I. J. Papick, Super-primitive elements, Pacific J. Math, 105 (1983), 217–226. [29] G. Picavet, Parties sondables d’un spectre et profondeur, Boll. Unione Mat. Ital. Sez B Artic. Ric. Mat., 7(8) (1994), 677–730.
  • G. Picavet, About GCD domains, in: Advances in commutative ring theory, in: Lect. Notes Pure Appl. Math., vol. 205 (editors D. E. Dobbs, M. Fontana and S. Kabbaj) (Marcel Dekker, New York-Basel, 1999), pp.501–519.
  • G. Picavet and M. Picavet-L’Hermitte, When is length a length function?, J. Algebra , 293 (2005), 561–594.
  • M. Sakaguchi, A note on the polynomial grade and the valuative dimension, Hiroshima Math. J. 8 (1978), 327–333.
  • M. Sakaguchi, Generalized Cohen-Macaulay rings, Hiroshima Math. J. 10 (1980), 615–634.
  • H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), 357–377. [35] M. Zafrullah, Well behaved prime ideals, J. Pure Appl. Algebra, 65 (1990), 199–207. Gabriel Picavet Laboratoire de Math´ematique,
  • Universit´e Blaise Pascal,
  • Aubi`ere Cedex, France
  • E-mail: Gabriel.Picavet@math.univ-bpclermont.fr
Yıl 2008, Cilt: 3 Sayı: 3, 43 - 57, 01.06.2008

Öz

Kaynakça

  • B. Alfonsi, Grade non-noetherien, Comm. Algebra, 9 (1981), 811–840.
  • D. F. Anderson, D. E. Dobbs and M. Fontana, On treed Nagata rings, J. Pure Appl. Algebra, 61 (1989), 107–122.
  • D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), 353– 363.
  • D. E. Dobbs, Treed domains have grade 1, Int. J. Commut. Rings, 2 (2003), 43–46.
  • M. Fontana, Kaplansky ideal transforms: A survey, in: Advances in commu- tative ring theory (editors D. E. Dobbs, M. Fontana and S. Kabbaj), in: Lect. Notes Pure Appl. Math., vol. 205, Marcel Dekker , (New York-Basel, 1999), pp.271–306.
  • M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Pr¨ufer integral closure, Comm. Algebra, 26 (1998), 1017–1039.
  • M. Fontana, J. A. Huckaba and I. J. Papick, Pr¨ufer domains, Marcel Dekker, New York-Basel, 1997.
  • S. Gabelli and M. Roitman, Maximal divisorial ideals and t-maximal ideals, JP. J. Algebra Number Theory Appl., 4 (2004), 323–336.
  • S. Glaz, Commutative coherent rings, Springer-Verlag, New York-Heidelberg- Berlin, 1989.
  • S. Glaz, On the coherence and weak dimension of the rings RhXi and R(X), Proc. Amer. Math. Soc. 106 (1989), 579-587.
  • S. Glaz and W. V. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977), 325–341. [12] S. Glaz, The weak dimension of Gaussian rings, Proc. Amer. Math. Soc. 133 (2005), 2507–2513.
  • J. R. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137–147.
  • M. Hochster, Grade-sensitive modules and perfect modules, Proc. London Math. Soc. 29 (1974), 55–76.
  • E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divi- sorial, Michigan Math. J. 35 (1988), 291–300.
  • E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra, 17 (1989), 1955–1969.
  • J. A. Huckaba and I. J. Papick, A localization of R[x], Canad. J. Math. 33 (1981), 103–115.
  • D. Katz and L. J. Ratliff, Jr, Two notes on ideal transforms, Math. Proc. Camb. Phil. Soc. 102 (1987), 389–397.
  • J. Iroz and D. E. Rush, Associated prime ideals in non-noetherian rings, Canad. J. Math. 36 (1984), 344–360.
  • B. G. Kang, Pr¨ufer v-multiplication domains and the ring R[X]Nv, J. Algebra, 123 (1989), 151–170.
  • I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, 1970.
  • K. P. McDowell, Pseudo-noetherian rings, Canad. Math. Bull., 19 (1976), 77–84.
  • A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Alge- bra, 33 (2005), 1345–1355.
  • J. Mott and M. Zafrullah, On Pr¨ufer v-multiplication domains, Manuscripta Math., 35 (1981), 1–26.
  • D. G. Northcott, Finite free resolutions, Cambridge University Press, vol 71, Cambridge-London-New York-Melbourne, 1976.
  • B. Olberding, On the structure of stable domains, Comm. Algebra, 30 (2002), 877–895. [27] I. J. Papick, Topologically defined classes of going-down domains, Bull. Amer. Math. Soc, 81 (1975), 718–721.
  • I. J. Papick, Super-primitive elements, Pacific J. Math, 105 (1983), 217–226. [29] G. Picavet, Parties sondables d’un spectre et profondeur, Boll. Unione Mat. Ital. Sez B Artic. Ric. Mat., 7(8) (1994), 677–730.
  • G. Picavet, About GCD domains, in: Advances in commutative ring theory, in: Lect. Notes Pure Appl. Math., vol. 205 (editors D. E. Dobbs, M. Fontana and S. Kabbaj) (Marcel Dekker, New York-Basel, 1999), pp.501–519.
  • G. Picavet and M. Picavet-L’Hermitte, When is length a length function?, J. Algebra , 293 (2005), 561–594.
  • M. Sakaguchi, A note on the polynomial grade and the valuative dimension, Hiroshima Math. J. 8 (1978), 327–333.
  • M. Sakaguchi, Generalized Cohen-Macaulay rings, Hiroshima Math. J. 10 (1980), 615–634.
  • H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), 357–377. [35] M. Zafrullah, Well behaved prime ideals, J. Pure Appl. Algebra, 65 (1990), 199–207. Gabriel Picavet Laboratoire de Math´ematique,
  • Universit´e Blaise Pascal,
  • Aubi`ere Cedex, France
  • E-mail: Gabriel.Picavet@math.univ-bpclermont.fr
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA36HV65BA
Bölüm Makaleler
Yazarlar

Gabriel Picavet Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2008
Yayımlandığı Sayı Yıl 2008 Cilt: 3 Sayı: 3

Kaynak Göster

APA Picavet, G. (2008). TREED DOMAINS. International Electronic Journal of Algebra, 3(3), 43-57.
AMA Picavet G. TREED DOMAINS. IEJA. Haziran 2008;3(3):43-57.
Chicago Picavet, Gabriel. “TREED DOMAINS”. International Electronic Journal of Algebra 3, sy. 3 (Haziran 2008): 43-57.
EndNote Picavet G (01 Haziran 2008) TREED DOMAINS. International Electronic Journal of Algebra 3 3 43–57.
IEEE G. Picavet, “TREED DOMAINS”, IEJA, c. 3, sy. 3, ss. 43–57, 2008.
ISNAD Picavet, Gabriel. “TREED DOMAINS”. International Electronic Journal of Algebra 3/3 (Haziran 2008), 43-57.
JAMA Picavet G. TREED DOMAINS. IEJA. 2008;3:43–57.
MLA Picavet, Gabriel. “TREED DOMAINS”. International Electronic Journal of Algebra, c. 3, sy. 3, 2008, ss. 43-57.
Vancouver Picavet G. TREED DOMAINS. IEJA. 2008;3(3):43-57.