BibTex RIS Cite

VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES

Year 2010, Volume: 8 Issue: 8, 18 - 29, 01.12.2010

Abstract

The purpose of this paper is to introduce valuation and discrete valuation modules over an integral domain. Some basic results and characterizations are obtained and these results are used to characterizeDedekind multiplication modules with discrete multiplication valuation modules.

References

  • Z. Abd El-bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755–779.
  • M. Alkan, B. Sarac and Y. Tiras, Dedekind modules, Comm. Algebra, (5)(2005), 1617–1626.
  • M. Alkan and Y. Tiras, On Invertible and Dense Submodules, Comm. Algebra, (10)(2004), 3911–3919.
  • R. Ameri, On The Prime Submodules of Multiplication Modules, IJMMS, (2003), 1715–1724.
  • M.F. Atiyah and I.G.MacDonald, Introduction to Commutative Algebra, Addison-Wesley,(1969).
  • N. Bourbaki, Commutative Algebra, Addison-Wesley,(1972).
  • S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math., 31(1)(2005), 75–85.
  • S. Hedayat and R. Nekooei, Prime and radical submodules of free modules over a PID, Houston J. Math., 32(2)(2006), 355–367.
  • S.Hedayat and R. Nekooei, Primary Decomposition of submodules of a finitely generated module over a PID, Houston J. Math., 32(2)(2006), 369–377.
  • S. Karimzadeh and R. Nekooei, On Dimension of Modules, Turkish J. Math, (2007), 95–109.
  • S. Karimzadeh and R. Nekooei, Some remarks on Dedekind modules, Accepted in Algebra Colloquium. M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic Press, London,(1971).
  • A.G. Naoum and F.H. Al-Alwan, Dedekind modules, Comm. Algebra, (2)(1996), 397–412.
  • R. Nekooei, On finitely generated multiplication modules, Czechoslovak Math. J., 55(130)(2005), 503–510.
  • B.Sarac, P. F. Smith and Y. Tiras, On Dedekind module, Comm. Algebra, 35 (2007) 1532–1538.
  • P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50(1988), –235. J. Moghaderi
  • Department of Mathematics Hormozgan University Iran e-mail: j.moghaderi@yahoo.com R. Nekooei Department of Mathematics Shahid Bahonar University of Kerman Iran e-mail: rnekooei@mail.uk.ac.ir
Year 2010, Volume: 8 Issue: 8, 18 - 29, 01.12.2010

Abstract

References

  • Z. Abd El-bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755–779.
  • M. Alkan, B. Sarac and Y. Tiras, Dedekind modules, Comm. Algebra, (5)(2005), 1617–1626.
  • M. Alkan and Y. Tiras, On Invertible and Dense Submodules, Comm. Algebra, (10)(2004), 3911–3919.
  • R. Ameri, On The Prime Submodules of Multiplication Modules, IJMMS, (2003), 1715–1724.
  • M.F. Atiyah and I.G.MacDonald, Introduction to Commutative Algebra, Addison-Wesley,(1969).
  • N. Bourbaki, Commutative Algebra, Addison-Wesley,(1972).
  • S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math., 31(1)(2005), 75–85.
  • S. Hedayat and R. Nekooei, Prime and radical submodules of free modules over a PID, Houston J. Math., 32(2)(2006), 355–367.
  • S.Hedayat and R. Nekooei, Primary Decomposition of submodules of a finitely generated module over a PID, Houston J. Math., 32(2)(2006), 369–377.
  • S. Karimzadeh and R. Nekooei, On Dimension of Modules, Turkish J. Math, (2007), 95–109.
  • S. Karimzadeh and R. Nekooei, Some remarks on Dedekind modules, Accepted in Algebra Colloquium. M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic Press, London,(1971).
  • A.G. Naoum and F.H. Al-Alwan, Dedekind modules, Comm. Algebra, (2)(1996), 397–412.
  • R. Nekooei, On finitely generated multiplication modules, Czechoslovak Math. J., 55(130)(2005), 503–510.
  • B.Sarac, P. F. Smith and Y. Tiras, On Dedekind module, Comm. Algebra, 35 (2007) 1532–1538.
  • P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50(1988), –235. J. Moghaderi
  • Department of Mathematics Hormozgan University Iran e-mail: j.moghaderi@yahoo.com R. Nekooei Department of Mathematics Shahid Bahonar University of Kerman Iran e-mail: rnekooei@mail.uk.ac.ir
There are 16 citations in total.

Details

Other ID JA34RT78VZ
Journal Section Articles
Authors

J. Moghaderi This is me

R. Nekooei This is me

Publication Date December 1, 2010
Published in Issue Year 2010 Volume: 8 Issue: 8

Cite

APA Moghaderi, J., & Nekooei, R. (2010). VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES. International Electronic Journal of Algebra, 8(8), 18-29.
AMA Moghaderi J, Nekooei R. VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES. IEJA. December 2010;8(8):18-29.
Chicago Moghaderi, J., and R. Nekooei. “VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES”. International Electronic Journal of Algebra 8, no. 8 (December 2010): 18-29.
EndNote Moghaderi J, Nekooei R (December 1, 2010) VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES. International Electronic Journal of Algebra 8 8 18–29.
IEEE J. Moghaderi and R. Nekooei, “VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES”, IEJA, vol. 8, no. 8, pp. 18–29, 2010.
ISNAD Moghaderi, J. - Nekooei, R. “VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES”. International Electronic Journal of Algebra 8/8 (December 2010), 18-29.
JAMA Moghaderi J, Nekooei R. VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES. IEJA. 2010;8:18–29.
MLA Moghaderi, J. and R. Nekooei. “VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES”. International Electronic Journal of Algebra, vol. 8, no. 8, 2010, pp. 18-29.
Vancouver Moghaderi J, Nekooei R. VALUATION, DISCRETE VALUATION AND DEDEKIND MODULES. IEJA. 2010;8(8):18-29.