Araştırma Makalesi
BibTex RIS Kaynak Göster

A characterization of Gorenstein Dedekind domains

Yıl 2017, Cilt: 22 Sayı: 22, 97 - 102, 11.07.2017
https://doi.org/10.24330/ieja.325929

Öz

In this paper, we show that a domain $R$ is a Gorenstein Dedekind
domain if and only if every divisible module is Gorenstein
injective; if and only if every divisible module is copure
injective.

Kaynakça

  • S. Bazzoni and L. Salce, Almost perfect domains, Colloq. Math., 95(2) (2003), 285-301.
  • D. Bennis, A short survey on Gorenstein global dimension, Actes des rencontres du C.I.R.M., 2(2) (2010), 115-117.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, at resolvents and dimensions, Comment. Math. Univ. Carolin., 34(2) (1993), 203-211.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin, 2000.
  • X. H. Fu, H. Y. Zhu and N. Q. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra, 40(1) (2012), 343-359.
  • L. Fuchs and S. B. Lee, Weak-injectivity and almost perfect domains, J. Algebra, 321(1) (2009), 18-27.
  • R. Hamsher, On the structure of a one dimensional quotient field, J. Algebra, 19 (1971), 416-425.
  • S. B. Lee, h-Divisible modules, Comm. Algebra, 31(1) (2003), 513-525.
  • S. B. Lee, Weak-injective modules, Comm. Algebra, 34(1) (2006), 361-370.
Yıl 2017, Cilt: 22 Sayı: 22, 97 - 102, 11.07.2017
https://doi.org/10.24330/ieja.325929

Öz

Kaynakça

  • S. Bazzoni and L. Salce, Almost perfect domains, Colloq. Math., 95(2) (2003), 285-301.
  • D. Bennis, A short survey on Gorenstein global dimension, Actes des rencontres du C.I.R.M., 2(2) (2010), 115-117.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, at resolvents and dimensions, Comment. Math. Univ. Carolin., 34(2) (1993), 203-211.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin, 2000.
  • X. H. Fu, H. Y. Zhu and N. Q. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra, 40(1) (2012), 343-359.
  • L. Fuchs and S. B. Lee, Weak-injectivity and almost perfect domains, J. Algebra, 321(1) (2009), 18-27.
  • R. Hamsher, On the structure of a one dimensional quotient field, J. Algebra, 19 (1971), 416-425.
  • S. B. Lee, h-Divisible modules, Comm. Algebra, 31(1) (2003), 513-525.
  • S. B. Lee, Weak-injective modules, Comm. Algebra, 34(1) (2006), 361-370.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Makaleler
Yazarlar

Tao Xiong Bu kişi benim

Yayımlanma Tarihi 11 Temmuz 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 22

Kaynak Göster

APA Xiong, T. (2017). A characterization of Gorenstein Dedekind domains. International Electronic Journal of Algebra, 22(22), 97-102. https://doi.org/10.24330/ieja.325929
AMA Xiong T. A characterization of Gorenstein Dedekind domains. IEJA. Temmuz 2017;22(22):97-102. doi:10.24330/ieja.325929
Chicago Xiong, Tao. “A Characterization of Gorenstein Dedekind Domains”. International Electronic Journal of Algebra 22, sy. 22 (Temmuz 2017): 97-102. https://doi.org/10.24330/ieja.325929.
EndNote Xiong T (01 Temmuz 2017) A characterization of Gorenstein Dedekind domains. International Electronic Journal of Algebra 22 22 97–102.
IEEE T. Xiong, “A characterization of Gorenstein Dedekind domains”, IEJA, c. 22, sy. 22, ss. 97–102, 2017, doi: 10.24330/ieja.325929.
ISNAD Xiong, Tao. “A Characterization of Gorenstein Dedekind Domains”. International Electronic Journal of Algebra 22/22 (Temmuz 2017), 97-102. https://doi.org/10.24330/ieja.325929.
JAMA Xiong T. A characterization of Gorenstein Dedekind domains. IEJA. 2017;22:97–102.
MLA Xiong, Tao. “A Characterization of Gorenstein Dedekind Domains”. International Electronic Journal of Algebra, c. 22, sy. 22, 2017, ss. 97-102, doi:10.24330/ieja.325929.
Vancouver Xiong T. A characterization of Gorenstein Dedekind domains. IEJA. 2017;22(22):97-102.