Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 23 Sayı: 23, 131 - 142, 11.01.2018
https://doi.org/10.24330/ieja.373654

Öz

Kaynakça

  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210(2) (2007), 437-445.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • I. Emmanouil, On the niteness of Gorenstein homological dimensions, J. Al- gebra, 372 (2012), 376-396.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 3, Walter de Gruyter & Co., Berlin, 2000.
  • R. M. Fossum, P. A. Grith and I. Reiten, Trivial Extensions of Abelian Cate- gories, Homological algebra of trivial extensions of abelian categories with ap- plications to ring theory, Lecture Notes in Mathematics, 456, Springer-Verlag, Berlin-New York, 1975.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jrgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • S. Sather-Wagstaff, T. Sharif and D. White, Tate cohomology with respect to semidualizing modules, J. Algebra, 324(9) (2010), 2336-2368.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974.
  • C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994.
  • D. White, Gorenstein projective dimension with respect to a semidualizing mod- ule, J. Commut. Algebra, 2(1) (2010), 111-137.
  • G. Zhao and J. Sun, Global dimensions of rings with respect to a semidualizing module, avilable from https://arxiv.org/abs/1307.0628.

Gorenstein homological dimensions with respect to a semidualizing module

Yıl 2018, Cilt: 23 Sayı: 23, 131 - 142, 11.01.2018
https://doi.org/10.24330/ieja.373654

Öz

In this paper, let R be a commutative ring and C a semidualizing
module. We investigate the (weak) C-Gorenstein global dimension of R
and we get a simple formula to compute the C-Gorenstein global dimension.
Moreover, we compare it with the classical (weak) global dimension of R and
get the relations between them. At last, we compare the weak C-Gorenstein
global dimension with the C-Gorenstein global dimension and we get that they
are equal when R is Noetherian.

Kaynakça

  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210(2) (2007), 437-445.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • I. Emmanouil, On the niteness of Gorenstein homological dimensions, J. Al- gebra, 372 (2012), 376-396.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 3, Walter de Gruyter & Co., Berlin, 2000.
  • R. M. Fossum, P. A. Grith and I. Reiten, Trivial Extensions of Abelian Cate- gories, Homological algebra of trivial extensions of abelian categories with ap- plications to ring theory, Lecture Notes in Mathematics, 456, Springer-Verlag, Berlin-New York, 1975.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3) (2004), 167-193.
  • H. Holm and P. Jrgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2) (2006), 423-445.
  • H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47(4) (2007), 781-808.
  • S. Sather-Wagstaff, T. Sharif and D. White, Tate cohomology with respect to semidualizing modules, J. Algebra, 324(9) (2010), 2336-2368.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1974.
  • C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, Cambridge University Press, Cambridge, 1994.
  • D. White, Gorenstein projective dimension with respect to a semidualizing mod- ule, J. Commut. Algebra, 2(1) (2010), 111-137.
  • G. Zhao and J. Sun, Global dimensions of rings with respect to a semidualizing module, avilable from https://arxiv.org/abs/1307.0628.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Zhen Zhang Bu kişi benim

Jiaqun Wei Bu kişi benim

Yayımlanma Tarihi 11 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 23

Kaynak Göster

APA Zhang, Z., & Wei, J. (2018). Gorenstein homological dimensions with respect to a semidualizing module. International Electronic Journal of Algebra, 23(23), 131-142. https://doi.org/10.24330/ieja.373654
AMA Zhang Z, Wei J. Gorenstein homological dimensions with respect to a semidualizing module. IEJA. Ocak 2018;23(23):131-142. doi:10.24330/ieja.373654
Chicago Zhang, Zhen, ve Jiaqun Wei. “Gorenstein Homological Dimensions With Respect to a Semidualizing Module”. International Electronic Journal of Algebra 23, sy. 23 (Ocak 2018): 131-42. https://doi.org/10.24330/ieja.373654.
EndNote Zhang Z, Wei J (01 Ocak 2018) Gorenstein homological dimensions with respect to a semidualizing module. International Electronic Journal of Algebra 23 23 131–142.
IEEE Z. Zhang ve J. Wei, “Gorenstein homological dimensions with respect to a semidualizing module”, IEJA, c. 23, sy. 23, ss. 131–142, 2018, doi: 10.24330/ieja.373654.
ISNAD Zhang, Zhen - Wei, Jiaqun. “Gorenstein Homological Dimensions With Respect to a Semidualizing Module”. International Electronic Journal of Algebra 23/23 (Ocak 2018), 131-142. https://doi.org/10.24330/ieja.373654.
JAMA Zhang Z, Wei J. Gorenstein homological dimensions with respect to a semidualizing module. IEJA. 2018;23:131–142.
MLA Zhang, Zhen ve Jiaqun Wei. “Gorenstein Homological Dimensions With Respect to a Semidualizing Module”. International Electronic Journal of Algebra, c. 23, sy. 23, 2018, ss. 131-42, doi:10.24330/ieja.373654.
Vancouver Zhang Z, Wei J. Gorenstein homological dimensions with respect to a semidualizing module. IEJA. 2018;23(23):131-42.