Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1518912

Abstract

References

  • S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation $x^2+q^{2k+1}=y^n$, J. Number Theory, 95(1) (2002), 95-100.
  • A. Bremner and N. X. Tho, On Fermat quartics $x^4+y^4=Dz^4$ over cubic fields, Acta Arith., 207(3) (2023), 217-234.
  • E. Catalan, Note extraite d'une lettre adressee a l'editeur par Mr. E. Catalan, Repetiteur a l'ecole polytechnique de Paris, J. Reine Angew. Math., 27 (1844), 192-192.
  • H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math., 490 (1997), 81-100.
  • P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-195.
  • R. J. S. Mina and J. B. Bacani, Non-existence of solutions of Diophantine equations of the form $p^x + q^y=z^{2n}$, Mathematics and Statistics, 7 (2019), 78-81.
  • R. J. S. Mina and J. B. Bacani, On the solutions of the Diophantine equation $p^x +(p + 4k)^y = z^2$ for prime pairs $p$ and $p+4k$, Eur. J. Pure Appl. Math., 14(2) (2021), 471-479.
  • B. Poonen, Some diophantine equations of the form $x^n + y^n=z^m$, Acta Arith., 86 (1998), 193-205.
  • S. Tadee and A. Siraworakun, Non-existence of positive integer solutions of the Diophantine equation $p^x+(p +2q)^y=z^2$, where $p, q$ and $p + 2q$ are prime numbers, Eur. J. Pure Appl. Math., 16(2) (2023), 724-735.
  • N. Terai, The Diophantine equation $x^2+q^m=p^n$, Acta Arith., 63 (1993), 351-358.
  • N. Terai, A note on the Diophantine equation $x^2+q^m=c^n$, Bull. Aust. Math. Soc., 90 (2014), 20-27.
  • N. X. Tho, The equation $x^4+2^ny^4=z^4$ in algebraic number fields, Acta. Math. Hungar., 167(1) (2022), 309-331.
  • N. X. Tho, Solutions to $x^4+py^4=z^4$ in cubic number fields, Arch. Math. (Basel), 119(3) (2022), 269-277.
  • H. L. Zhu, A note on the Diophantine equation $x^2+q^m=y^3$, Acta Arith., 146(2) (2011), 195-202.

On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers

Year 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1518912

Abstract

In this paper, we solve the Diophantine equation $(p^n)^x+(4^mp+1)^y=z^2$ in $\mathbb{N}$ for $p\geq 3$ and $1+4^mp$ are prime integers. Concretely, using the congruent method, we prove that this equation has no non-negative solutions if $p>3$. For the case $p=3$, we will show that this equation has no solutions if $m>1$. Furthermore, in this case, when $m=1$ using the elliptic curves, we will show that this equation has only solution $(x,y,z)=(3, 2, 14)$ if $n=1$ and $(x,y,z)=(1,2,14)$ if $n=3$.

References

  • S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation $x^2+q^{2k+1}=y^n$, J. Number Theory, 95(1) (2002), 95-100.
  • A. Bremner and N. X. Tho, On Fermat quartics $x^4+y^4=Dz^4$ over cubic fields, Acta Arith., 207(3) (2023), 217-234.
  • E. Catalan, Note extraite d'une lettre adressee a l'editeur par Mr. E. Catalan, Repetiteur a l'ecole polytechnique de Paris, J. Reine Angew. Math., 27 (1844), 192-192.
  • H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math., 490 (1997), 81-100.
  • P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-195.
  • R. J. S. Mina and J. B. Bacani, Non-existence of solutions of Diophantine equations of the form $p^x + q^y=z^{2n}$, Mathematics and Statistics, 7 (2019), 78-81.
  • R. J. S. Mina and J. B. Bacani, On the solutions of the Diophantine equation $p^x +(p + 4k)^y = z^2$ for prime pairs $p$ and $p+4k$, Eur. J. Pure Appl. Math., 14(2) (2021), 471-479.
  • B. Poonen, Some diophantine equations of the form $x^n + y^n=z^m$, Acta Arith., 86 (1998), 193-205.
  • S. Tadee and A. Siraworakun, Non-existence of positive integer solutions of the Diophantine equation $p^x+(p +2q)^y=z^2$, where $p, q$ and $p + 2q$ are prime numbers, Eur. J. Pure Appl. Math., 16(2) (2023), 724-735.
  • N. Terai, The Diophantine equation $x^2+q^m=p^n$, Acta Arith., 63 (1993), 351-358.
  • N. Terai, A note on the Diophantine equation $x^2+q^m=c^n$, Bull. Aust. Math. Soc., 90 (2014), 20-27.
  • N. X. Tho, The equation $x^4+2^ny^4=z^4$ in algebraic number fields, Acta. Math. Hungar., 167(1) (2022), 309-331.
  • N. X. Tho, Solutions to $x^4+py^4=z^4$ in cubic number fields, Arch. Math. (Basel), 119(3) (2022), 269-277.
  • H. L. Zhu, A note on the Diophantine equation $x^2+q^m=y^3$, Acta Arith., 146(2) (2011), 195-202.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Pham Hong Nam This is me

Early Pub Date July 19, 2024
Publication Date
Submission Date November 11, 2023
Acceptance Date May 21, 2024
Published in Issue Year 2024 Early Access

Cite

APA Nam, P. H. (2024). On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. International Electronic Journal of Algebra1-11. https://doi.org/10.24330/ieja.1518912
AMA Nam PH. On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. IEJA. Published online July 1, 2024:1-11. doi:10.24330/ieja.1518912
Chicago Nam, Pham Hong. “On the Diophantine Equation $~(p^n)^x+(4^mp+1)^y=z^2~$ When $~p, 4^mp+1~$ Are Prime Numbers”. International Electronic Journal of Algebra, July (July 2024), 1-11. https://doi.org/10.24330/ieja.1518912.
EndNote Nam PH (July 1, 2024) On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. International Electronic Journal of Algebra 1–11.
IEEE P. H. Nam, “On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers”, IEJA, pp. 1–11, July 2024, doi: 10.24330/ieja.1518912.
ISNAD Nam, Pham Hong. “On the Diophantine Equation $~(p^n)^x+(4^mp+1)^y=z^2~$ When $~p, 4^mp+1~$ Are Prime Numbers”. International Electronic Journal of Algebra. July 2024. 1-11. https://doi.org/10.24330/ieja.1518912.
JAMA Nam PH. On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. IEJA. 2024;:1–11.
MLA Nam, Pham Hong. “On the Diophantine Equation $~(p^n)^x+(4^mp+1)^y=z^2~$ When $~p, 4^mp+1~$ Are Prime Numbers”. International Electronic Journal of Algebra, 2024, pp. 1-11, doi:10.24330/ieja.1518912.
Vancouver Nam PH. On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. IEJA. 2024:1-11.