Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1518912

Öz

Kaynakça

  • S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation $x^2+q^{2k+1}=y^n$, J. Number Theory, 95(1) (2002), 95-100.
  • A. Bremner and N. X. Tho, On Fermat quartics $x^4+y^4=Dz^4$ over cubic fields, Acta Arith., 207(3) (2023), 217-234.
  • E. Catalan, Note extraite d'une lettre adressee a l'editeur par Mr. E. Catalan, Repetiteur a l'ecole polytechnique de Paris, J. Reine Angew. Math., 27 (1844), 192-192.
  • H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math., 490 (1997), 81-100.
  • P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-195.
  • R. J. S. Mina and J. B. Bacani, Non-existence of solutions of Diophantine equations of the form $p^x + q^y=z^{2n}$, Mathematics and Statistics, 7 (2019), 78-81.
  • R. J. S. Mina and J. B. Bacani, On the solutions of the Diophantine equation $p^x +(p + 4k)^y = z^2$ for prime pairs $p$ and $p+4k$, Eur. J. Pure Appl. Math., 14(2) (2021), 471-479.
  • B. Poonen, Some diophantine equations of the form $x^n + y^n=z^m$, Acta Arith., 86 (1998), 193-205.
  • S. Tadee and A. Siraworakun, Non-existence of positive integer solutions of the Diophantine equation $p^x+(p +2q)^y=z^2$, where $p, q$ and $p + 2q$ are prime numbers, Eur. J. Pure Appl. Math., 16(2) (2023), 724-735.
  • N. Terai, The Diophantine equation $x^2+q^m=p^n$, Acta Arith., 63 (1993), 351-358.
  • N. Terai, A note on the Diophantine equation $x^2+q^m=c^n$, Bull. Aust. Math. Soc., 90 (2014), 20-27.
  • N. X. Tho, The equation $x^4+2^ny^4=z^4$ in algebraic number fields, Acta. Math. Hungar., 167(1) (2022), 309-331.
  • N. X. Tho, Solutions to $x^4+py^4=z^4$ in cubic number fields, Arch. Math. (Basel), 119(3) (2022), 269-277.
  • H. L. Zhu, A note on the Diophantine equation $x^2+q^m=y^3$, Acta Arith., 146(2) (2011), 195-202.

On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers

Yıl 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1518912

Öz

In this paper, we solve the Diophantine equation $(p^n)^x+(4^mp+1)^y=z^2$ in $\mathbb{N}$ for $p\geq 3$ and $1+4^mp$ are prime integers. Concretely, using the congruent method, we prove that this equation has no non-negative solutions if $p>3$. For the case $p=3$, we will show that this equation has no solutions if $m>1$. Furthermore, in this case, when $m=1$ using the elliptic curves, we will show that this equation has only solution $(x,y,z)=(3, 2, 14)$ if $n=1$ and $(x,y,z)=(1,2,14)$ if $n=3$.

Kaynakça

  • S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation $x^2+q^{2k+1}=y^n$, J. Number Theory, 95(1) (2002), 95-100.
  • A. Bremner and N. X. Tho, On Fermat quartics $x^4+y^4=Dz^4$ over cubic fields, Acta Arith., 207(3) (2023), 217-234.
  • E. Catalan, Note extraite d'une lettre adressee a l'editeur par Mr. E. Catalan, Repetiteur a l'ecole polytechnique de Paris, J. Reine Angew. Math., 27 (1844), 192-192.
  • H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math., 490 (1997), 81-100.
  • P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167-195.
  • R. J. S. Mina and J. B. Bacani, Non-existence of solutions of Diophantine equations of the form $p^x + q^y=z^{2n}$, Mathematics and Statistics, 7 (2019), 78-81.
  • R. J. S. Mina and J. B. Bacani, On the solutions of the Diophantine equation $p^x +(p + 4k)^y = z^2$ for prime pairs $p$ and $p+4k$, Eur. J. Pure Appl. Math., 14(2) (2021), 471-479.
  • B. Poonen, Some diophantine equations of the form $x^n + y^n=z^m$, Acta Arith., 86 (1998), 193-205.
  • S. Tadee and A. Siraworakun, Non-existence of positive integer solutions of the Diophantine equation $p^x+(p +2q)^y=z^2$, where $p, q$ and $p + 2q$ are prime numbers, Eur. J. Pure Appl. Math., 16(2) (2023), 724-735.
  • N. Terai, The Diophantine equation $x^2+q^m=p^n$, Acta Arith., 63 (1993), 351-358.
  • N. Terai, A note on the Diophantine equation $x^2+q^m=c^n$, Bull. Aust. Math. Soc., 90 (2014), 20-27.
  • N. X. Tho, The equation $x^4+2^ny^4=z^4$ in algebraic number fields, Acta. Math. Hungar., 167(1) (2022), 309-331.
  • N. X. Tho, Solutions to $x^4+py^4=z^4$ in cubic number fields, Arch. Math. (Basel), 119(3) (2022), 269-277.
  • H. L. Zhu, A note on the Diophantine equation $x^2+q^m=y^3$, Acta Arith., 146(2) (2011), 195-202.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Pham Hong Nam Bu kişi benim

Erken Görünüm Tarihi 19 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 11 Kasım 2023
Kabul Tarihi 21 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Nam, P. H. (2024). On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. International Electronic Journal of Algebra1-11. https://doi.org/10.24330/ieja.1518912
AMA Nam PH. On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. IEJA. Published online 01 Temmuz 2024:1-11. doi:10.24330/ieja.1518912
Chicago Nam, Pham Hong. “On the Diophantine Equation $~(p^n)^x+(4^mp+1)^y=z^2~$ When $~p, 4^mp+1~$ Are Prime Numbers”. International Electronic Journal of Algebra, Temmuz (Temmuz 2024), 1-11. https://doi.org/10.24330/ieja.1518912.
EndNote Nam PH (01 Temmuz 2024) On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. International Electronic Journal of Algebra 1–11.
IEEE P. H. Nam, “On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers”, IEJA, ss. 1–11, Temmuz 2024, doi: 10.24330/ieja.1518912.
ISNAD Nam, Pham Hong. “On the Diophantine Equation $~(p^n)^x+(4^mp+1)^y=z^2~$ When $~p, 4^mp+1~$ Are Prime Numbers”. International Electronic Journal of Algebra. Temmuz 2024. 1-11. https://doi.org/10.24330/ieja.1518912.
JAMA Nam PH. On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. IEJA. 2024;:1–11.
MLA Nam, Pham Hong. “On the Diophantine Equation $~(p^n)^x+(4^mp+1)^y=z^2~$ When $~p, 4^mp+1~$ Are Prime Numbers”. International Electronic Journal of Algebra, 2024, ss. 1-11, doi:10.24330/ieja.1518912.
Vancouver Nam PH. On the Diophantine equation $~(p^n)^x+(4^mp+1)^y=z^2~$ when $~p, 4^mp+1~$ are prime numbers. IEJA. 2024:1-11.