Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 19
https://doi.org/10.24330/ieja.1521082

Öz

Kaynakça

  • F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1) (1995), 1-26.
  • D. D. Anderson, Multiplicative Lattices, Ph.D dissertation, The University of Chicago, 1974.
  • D. D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis, 6(2) (1976), 131-145.
  • D. D. Anderson, C. Jayaram and P. A. Phiri, Baer lattices, Acta Sci. Math. (Szeged), 59(1-2) (1994), 61-74.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On $z^0$-ideals in $C(X)$, Fund. Math., 160(1) (1999), 15-25.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra, 28(2) (2000), 1061-1073.
  • B. Banaschewski, On certain localic nuclei, Cahiers Topologie Geom. Differentielle Categ., 35(3) (1994), 227-237.
  • B. Banaschewski and R. Harting, Lattice aspects of radical ideals and choice principles, Proc. London Math. Soc., 50(3) (1985), 385-404.
  • P. Bhattacharjee, Maximal $d$-elements of an algebraic frame, Order, 36(2) (2019), 377-390.
  • M. Contessa, A note on Baer rings, J. Algebra, 118(1) (1988), 20-32.
  • R. P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc., 44(4) (1938), 262-268.
  • R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., 12 (1962), 481-498.
  • T. Dube, Some ring-theoretic properties of almost $P$-frames, Algebra Universalis, 60(2) (2009), 145-162.
  • T. Dube, Rings in which sums of $d$-ideals are $d$-ideals, J. Korean Math. Soc., 56(2) (2019), 539-558.
  • T. Dube and L. Sithole, On the sublocale of an algebraic frame induced by the $d$-nucleus, Topology Appl., 263 (2019), 90-106.
  • A. Facchini, C. A. Finocchiaro and G. Janelidze, Abstractly constructed prime spectra, Algebra Universalis, 83(1) (2022), 8 (38 pp).
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces I, Nederl. Akad. Wetensch. Indag. Math., 42(2) (1980), 183-195.
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces II, Nederl. Akad. Wetensch. Indag. Math., 42(4) (1980), 391-408.
  • C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math., 15(8) (1984), 855-864.
  • C. S. Manjarekar and A. N. Chavan, $z$-elements and $z_j$-elements in multiplicative lattices, Palest. J. Math., 8(1) (2019), 138-147.
  • J. Martinez and E. Zenk, When an algebraic frame is regular, Algebra Universalis, 50(2) (2003), 231-257.
  • G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon., 34(6) (1989), 941-956.
  • C. J. Mulvey, &, Second topology conference (Taormina, 1984), Rend. Circ. Mat. Palermo (2) Suppl., 12 (1986), 99-104.
  • S. B. Niefield and K. I. Rosenthal, Constructing locales from quantales, Math. Proc. Cambridge Philos. Soc., 104(2) (1988), 215-234.
  • B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces III, Nederl. Akad. Wetensch. Indag. Math., 43(4) (1981), 409-422.
  • S. Safaeeyan and A. Taherifar, $d$-ideals, $fd$-ideals and prime ideals, Quaest. Math., 42(6) (2019), 717-732.
  • H. Simmons, A framework for topology, Stud. Logic Found. Math., 96 (1978), 239-251.
  • T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), 257-263.
  • M. Ward, Residuation in structures over which a multiplication is defined, Duke Math. J., 3(4) (1937), 627-636.
  • M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45(3) (1939), 335-354.

Revisiting Baer elements

Yıl 2024, Early Access, 1 - 19
https://doi.org/10.24330/ieja.1521082

Öz

The objective of this paper is to extend certain properties observed in $d$-ideals of rings and $d$-elements of frames to Baer elements in multiplicative lattices. Additionally, we present results concerning these elements that have not been addressed in the study of $d$-ideals of rings. Furthermore, we introduce Baer closures and explore Baer maximal, prime, semiprime and meet-irreducible elements.

Kaynakça

  • F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1) (1995), 1-26.
  • D. D. Anderson, Multiplicative Lattices, Ph.D dissertation, The University of Chicago, 1974.
  • D. D. Anderson, Abstract commutative ideal theory without chain condition, Algebra Universalis, 6(2) (1976), 131-145.
  • D. D. Anderson, C. Jayaram and P. A. Phiri, Baer lattices, Acta Sci. Math. (Szeged), 59(1-2) (1994), 61-74.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On $z^0$-ideals in $C(X)$, Fund. Math., 160(1) (1999), 15-25.
  • F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra, 28(2) (2000), 1061-1073.
  • B. Banaschewski, On certain localic nuclei, Cahiers Topologie Geom. Differentielle Categ., 35(3) (1994), 227-237.
  • B. Banaschewski and R. Harting, Lattice aspects of radical ideals and choice principles, Proc. London Math. Soc., 50(3) (1985), 385-404.
  • P. Bhattacharjee, Maximal $d$-elements of an algebraic frame, Order, 36(2) (2019), 377-390.
  • M. Contessa, A note on Baer rings, J. Algebra, 118(1) (1988), 20-32.
  • R. P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math. Soc., 44(4) (1938), 262-268.
  • R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., 12 (1962), 481-498.
  • T. Dube, Some ring-theoretic properties of almost $P$-frames, Algebra Universalis, 60(2) (2009), 145-162.
  • T. Dube, Rings in which sums of $d$-ideals are $d$-ideals, J. Korean Math. Soc., 56(2) (2019), 539-558.
  • T. Dube and L. Sithole, On the sublocale of an algebraic frame induced by the $d$-nucleus, Topology Appl., 263 (2019), 90-106.
  • A. Facchini, C. A. Finocchiaro and G. Janelidze, Abstractly constructed prime spectra, Algebra Universalis, 83(1) (2022), 8 (38 pp).
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces I, Nederl. Akad. Wetensch. Indag. Math., 42(2) (1980), 183-195.
  • C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces II, Nederl. Akad. Wetensch. Indag. Math., 42(4) (1980), 391-408.
  • C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math., 15(8) (1984), 855-864.
  • C. S. Manjarekar and A. N. Chavan, $z$-elements and $z_j$-elements in multiplicative lattices, Palest. J. Math., 8(1) (2019), 138-147.
  • J. Martinez and E. Zenk, When an algebraic frame is regular, Algebra Universalis, 50(2) (2003), 231-257.
  • G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon., 34(6) (1989), 941-956.
  • C. J. Mulvey, &, Second topology conference (Taormina, 1984), Rend. Circ. Mat. Palermo (2) Suppl., 12 (1986), 99-104.
  • S. B. Niefield and K. I. Rosenthal, Constructing locales from quantales, Math. Proc. Cambridge Philos. Soc., 104(2) (1988), 215-234.
  • B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces III, Nederl. Akad. Wetensch. Indag. Math., 43(4) (1981), 409-422.
  • S. Safaeeyan and A. Taherifar, $d$-ideals, $fd$-ideals and prime ideals, Quaest. Math., 42(6) (2019), 717-732.
  • H. Simmons, A framework for topology, Stud. Logic Found. Math., 96 (1978), 239-251.
  • T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), 257-263.
  • M. Ward, Residuation in structures over which a multiplication is defined, Duke Math. J., 3(4) (1937), 627-636.
  • M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45(3) (1939), 335-354.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Amartya Goswami

Themba Dube

Erken Görünüm Tarihi 24 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 6 Haziran 2024
Kabul Tarihi 3 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Goswami, A., & Dube, T. (2024). Revisiting Baer elements. International Electronic Journal of Algebra1-19. https://doi.org/10.24330/ieja.1521082
AMA Goswami A, Dube T. Revisiting Baer elements. IEJA. Published online 01 Temmuz 2024:1-19. doi:10.24330/ieja.1521082
Chicago Goswami, Amartya, ve Themba Dube. “Revisiting Baer Elements”. International Electronic Journal of Algebra, Temmuz (Temmuz 2024), 1-19. https://doi.org/10.24330/ieja.1521082.
EndNote Goswami A, Dube T (01 Temmuz 2024) Revisiting Baer elements. International Electronic Journal of Algebra 1–19.
IEEE A. Goswami ve T. Dube, “Revisiting Baer elements”, IEJA, ss. 1–19, Temmuz 2024, doi: 10.24330/ieja.1521082.
ISNAD Goswami, Amartya - Dube, Themba. “Revisiting Baer Elements”. International Electronic Journal of Algebra. Temmuz 2024. 1-19. https://doi.org/10.24330/ieja.1521082.
JAMA Goswami A, Dube T. Revisiting Baer elements. IEJA. 2024;:1–19.
MLA Goswami, Amartya ve Themba Dube. “Revisiting Baer Elements”. International Electronic Journal of Algebra, 2024, ss. 1-19, doi:10.24330/ieja.1521082.
Vancouver Goswami A, Dube T. Revisiting Baer elements. IEJA. 2024:1-19.