Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1575698

Öz

Kaynakça

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214 (2010), 53-60.
  • D. Bennis and M. El Hajoui, On $S$-coherence, J. Korean Math. Soc., 55(6) (2018), 1499-1512.
  • M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
  • M. Chhiti and S. E. Mahdou, $S$-coherent property in trivial extension and in amalgamated duplication, Commun. Korean Math. Soc., 38(3) (2023), 705-714.
  • M. Chhiti and S. E. Mahdou, When every regular ideal is $S$-finite, Quaest. Math., 47(3) (2024), 655-666.
  • M. Chhiti and S. E. Mahdou, When every finitely generated regular ideal is finitely presented, Commun. Korean Math. Soc., 39(2) (2024), 363-372.
  • M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306(2) (2006), 507-519.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • D. E. Dobbs, A. El Khalfi and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra, 47(5) (2019), 2060-2077.
  • R. El Khalfaoui and N. Mahdou, The $\phi$-Krull dimension of some commutative extensions, Comm. Algebra, 48(9) (2020), 3800-3810.
  • A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 139-182.
  • A. El Khalfi, N. Mahdou and Y. Zahir, Strongly primary ideals in rings with zero-divisors, Quaest. Math., 44(5) (2021), 569-580.
  • G. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are $Nil_*$-coherent or special $Nil_*$-coherent, J. Algebra Appl., 16 (2017), 1750187 (24 pp).
  • K. A. Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41 (2015), 625-632.
  • M. Issoual and N. Mahdou, Trivial extensions defined by 2-absorbing-like conditions, J. Algebra Appl., 17(11) (2018), 1850208 (10 pp).
  • S.-E. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 1-17.
  • S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • A. Mimouni, M. Kabbour and N. Mahdou, Trivial ring extensions defined by arithmetical-like properties, Comm. Algebra, 41(12) (2013), 4534-4548.
  • W. Qi, X. Zhang and W. Zhao, New characterizations of $S$-coherent rings, J. Algebra Appl., 22(4) (2023), 2350078 (14 pp).

Rings in which every regular finitely generated ideal is $S$-finitely presented

Yıl 2024, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1575698

Öz

In this work, we introduce and explore a class of rings where every regular finitely generated ideal is $S$-finitely presented, called a regular $S$-coherent ring. This concept represents a weaker version of the $S$-coherent ring property. It is shown that any $S$-coherent ring is inherently a regular $S$-coherent ring, and in the case of domains, the two properties are equivalent. We also investigate how this notion extends to different settings of commutative ring extensions, including direct products, trivial ring extensions, and the amalgamated duplication of a ring along an ideal. The obtained results yield new examples of regular $S$-coherent rings that are not $S$-coherent.

Kaynakça

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214 (2010), 53-60.
  • D. Bennis and M. El Hajoui, On $S$-coherence, J. Korean Math. Soc., 55(6) (2018), 1499-1512.
  • M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
  • M. Chhiti and S. E. Mahdou, $S$-coherent property in trivial extension and in amalgamated duplication, Commun. Korean Math. Soc., 38(3) (2023), 705-714.
  • M. Chhiti and S. E. Mahdou, When every regular ideal is $S$-finite, Quaest. Math., 47(3) (2024), 655-666.
  • M. Chhiti and S. E. Mahdou, When every finitely generated regular ideal is finitely presented, Commun. Korean Math. Soc., 39(2) (2024), 363-372.
  • M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306(2) (2006), 507-519.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • D. E. Dobbs, A. El Khalfi and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra, 47(5) (2019), 2060-2077.
  • R. El Khalfaoui and N. Mahdou, The $\phi$-Krull dimension of some commutative extensions, Comm. Algebra, 48(9) (2020), 3800-3810.
  • A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 139-182.
  • A. El Khalfi, N. Mahdou and Y. Zahir, Strongly primary ideals in rings with zero-divisors, Quaest. Math., 44(5) (2021), 569-580.
  • G. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are $Nil_*$-coherent or special $Nil_*$-coherent, J. Algebra Appl., 16 (2017), 1750187 (24 pp).
  • K. A. Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41 (2015), 625-632.
  • M. Issoual and N. Mahdou, Trivial extensions defined by 2-absorbing-like conditions, J. Algebra Appl., 17(11) (2018), 1850208 (10 pp).
  • S.-E. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 1-17.
  • S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • A. Mimouni, M. Kabbour and N. Mahdou, Trivial ring extensions defined by arithmetical-like properties, Comm. Algebra, 41(12) (2013), 4534-4548.
  • W. Qi, X. Zhang and W. Zhao, New characterizations of $S$-coherent rings, J. Algebra Appl., 22(4) (2023), 2350078 (14 pp).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Salah Eddine Mahdou

Mohamed Chhiti

Erken Görünüm Tarihi 29 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 23 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Mahdou, S. E., & Chhiti, M. (2024). Rings in which every regular finitely generated ideal is $S$-finitely presented. International Electronic Journal of Algebra1-13. https://doi.org/10.24330/ieja.1575698
AMA Mahdou SE, Chhiti M. Rings in which every regular finitely generated ideal is $S$-finitely presented. IEJA. Published online 01 Ekim 2024:1-13. doi:10.24330/ieja.1575698
Chicago Mahdou, Salah Eddine, ve Mohamed Chhiti. “Rings in Which Every Regular Finitely Generated Ideal Is $S$-Finitely Presented”. International Electronic Journal of Algebra, Ekim (Ekim 2024), 1-13. https://doi.org/10.24330/ieja.1575698.
EndNote Mahdou SE, Chhiti M (01 Ekim 2024) Rings in which every regular finitely generated ideal is $S$-finitely presented. International Electronic Journal of Algebra 1–13.
IEEE S. E. Mahdou ve M. Chhiti, “Rings in which every regular finitely generated ideal is $S$-finitely presented”, IEJA, ss. 1–13, Ekim 2024, doi: 10.24330/ieja.1575698.
ISNAD Mahdou, Salah Eddine - Chhiti, Mohamed. “Rings in Which Every Regular Finitely Generated Ideal Is $S$-Finitely Presented”. International Electronic Journal of Algebra. Ekim 2024. 1-13. https://doi.org/10.24330/ieja.1575698.
JAMA Mahdou SE, Chhiti M. Rings in which every regular finitely generated ideal is $S$-finitely presented. IEJA. 2024;:1–13.
MLA Mahdou, Salah Eddine ve Mohamed Chhiti. “Rings in Which Every Regular Finitely Generated Ideal Is $S$-Finitely Presented”. International Electronic Journal of Algebra, 2024, ss. 1-13, doi:10.24330/ieja.1575698.
Vancouver Mahdou SE, Chhiti M. Rings in which every regular finitely generated ideal is $S$-finitely presented. IEJA. 2024:1-13.