Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1575698

Abstract

References

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214 (2010), 53-60.
  • D. Bennis and M. El Hajoui, On $S$-coherence, J. Korean Math. Soc., 55(6) (2018), 1499-1512.
  • M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
  • M. Chhiti and S. E. Mahdou, $S$-coherent property in trivial extension and in amalgamated duplication, Commun. Korean Math. Soc., 38(3) (2023), 705-714.
  • M. Chhiti and S. E. Mahdou, When every regular ideal is $S$-finite, Quaest. Math., 47(3) (2024), 655-666.
  • M. Chhiti and S. E. Mahdou, When every finitely generated regular ideal is finitely presented, Commun. Korean Math. Soc., 39(2) (2024), 363-372.
  • M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306(2) (2006), 507-519.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • D. E. Dobbs, A. El Khalfi and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra, 47(5) (2019), 2060-2077.
  • R. El Khalfaoui and N. Mahdou, The $\phi$-Krull dimension of some commutative extensions, Comm. Algebra, 48(9) (2020), 3800-3810.
  • A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 139-182.
  • A. El Khalfi, N. Mahdou and Y. Zahir, Strongly primary ideals in rings with zero-divisors, Quaest. Math., 44(5) (2021), 569-580.
  • G. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are $Nil_*$-coherent or special $Nil_*$-coherent, J. Algebra Appl., 16 (2017), 1750187 (24 pp).
  • K. A. Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41 (2015), 625-632.
  • M. Issoual and N. Mahdou, Trivial extensions defined by 2-absorbing-like conditions, J. Algebra Appl., 17(11) (2018), 1850208 (10 pp).
  • S.-E. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 1-17.
  • S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • A. Mimouni, M. Kabbour and N. Mahdou, Trivial ring extensions defined by arithmetical-like properties, Comm. Algebra, 41(12) (2013), 4534-4548.
  • W. Qi, X. Zhang and W. Zhao, New characterizations of $S$-coherent rings, J. Algebra Appl., 22(4) (2023), 2350078 (14 pp).

Rings in which every regular finitely generated ideal is $S$-finitely presented

Year 2025, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1575698

Abstract

In this work, we introduce and explore a class of rings where every regular finitely generated ideal is $S$-finitely presented, called a regular $S$-coherent ring. This concept represents a weaker version of the $S$-coherent ring property. It is shown that any $S$-coherent ring is inherently a regular $S$-coherent ring, and in the case of domains, the two properties are equivalent. We also investigate how this notion extends to different settings of commutative ring extensions, including direct products, trivial ring extensions, and the amalgamated duplication of a ring along an ideal. The obtained results yield new examples of regular $S$-coherent rings that are not $S$-coherent.

References

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214 (2010), 53-60.
  • D. Bennis and M. El Hajoui, On $S$-coherence, J. Korean Math. Soc., 55(6) (2018), 1499-1512.
  • M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated duplication of a ring along an ideal, Comm. Algebra, 43(1) (2015), 249-261.
  • M. Chhiti and S. E. Mahdou, $S$-coherent property in trivial extension and in amalgamated duplication, Commun. Korean Math. Soc., 38(3) (2023), 705-714.
  • M. Chhiti and S. E. Mahdou, When every regular ideal is $S$-finite, Quaest. Math., 47(3) (2024), 655-666.
  • M. Chhiti and S. E. Mahdou, When every finitely generated regular ideal is finitely presented, Commun. Korean Math. Soc., 39(2) (2024), 363-372.
  • M. D'Anna, A construction of Gorenstein rings, J. Algebra, 306(2) (2006), 507-519.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641.
  • M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443-459.
  • D. E. Dobbs, A. El Khalfi and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra, 47(5) (2019), 2060-2077.
  • R. El Khalfaoui and N. Mahdou, The $\phi$-Krull dimension of some commutative extensions, Comm. Algebra, 48(9) (2020), 3800-3810.
  • A. El Khalfi, H. Kim and N. Mahdou, Amalgamation extension in commutative ring theory: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 139-182.
  • A. El Khalfi, N. Mahdou and Y. Zahir, Strongly primary ideals in rings with zero-divisors, Quaest. Math., 44(5) (2021), 569-580.
  • G. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • K. A. Ismaili, D. E. Dobbs and N. Mahdou, Commutative rings and modules that are $Nil_*$-coherent or special $Nil_*$-coherent, J. Algebra Appl., 16 (2017), 1750187 (24 pp).
  • K. A. Ismaili and N. Mahdou, Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc., 41 (2015), 625-632.
  • M. Issoual and N. Mahdou, Trivial extensions defined by 2-absorbing-like conditions, J. Algebra Appl., 17(11) (2018), 1850208 (10 pp).
  • S.-E. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroc. J. Algebra Geom. Appl., 1(1) (2022), 1-17.
  • S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • A. Mimouni, M. Kabbour and N. Mahdou, Trivial ring extensions defined by arithmetical-like properties, Comm. Algebra, 41(12) (2013), 4534-4548.
  • W. Qi, X. Zhang and W. Zhao, New characterizations of $S$-coherent rings, J. Algebra Appl., 22(4) (2023), 2350078 (14 pp).
There are 24 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Salah Eddine Mahdou

Mohamed Chhiti

Early Pub Date October 29, 2024
Publication Date
Submission Date March 18, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2025 Early Access

Cite

APA Mahdou, S. E., & Chhiti, M. (2024). Rings in which every regular finitely generated ideal is $S$-finitely presented. International Electronic Journal of Algebra1-13. https://doi.org/10.24330/ieja.1575698
AMA Mahdou SE, Chhiti M. Rings in which every regular finitely generated ideal is $S$-finitely presented. IEJA. Published online October 1, 2024:1-13. doi:10.24330/ieja.1575698
Chicago Mahdou, Salah Eddine, and Mohamed Chhiti. “Rings in Which Every Regular Finitely Generated Ideal Is $S$-Finitely Presented”. International Electronic Journal of Algebra, October (October 2024), 1-13. https://doi.org/10.24330/ieja.1575698.
EndNote Mahdou SE, Chhiti M (October 1, 2024) Rings in which every regular finitely generated ideal is $S$-finitely presented. International Electronic Journal of Algebra 1–13.
IEEE S. E. Mahdou and M. Chhiti, “Rings in which every regular finitely generated ideal is $S$-finitely presented”, IEJA, pp. 1–13, October 2024, doi: 10.24330/ieja.1575698.
ISNAD Mahdou, Salah Eddine - Chhiti, Mohamed. “Rings in Which Every Regular Finitely Generated Ideal Is $S$-Finitely Presented”. International Electronic Journal of Algebra. October 2024. 1-13. https://doi.org/10.24330/ieja.1575698.
JAMA Mahdou SE, Chhiti M. Rings in which every regular finitely generated ideal is $S$-finitely presented. IEJA. 2024;:1–13.
MLA Mahdou, Salah Eddine and Mohamed Chhiti. “Rings in Which Every Regular Finitely Generated Ideal Is $S$-Finitely Presented”. International Electronic Journal of Algebra, 2024, pp. 1-13, doi:10.24330/ieja.1575698.
Vancouver Mahdou SE, Chhiti M. Rings in which every regular finitely generated ideal is $S$-finitely presented. IEJA. 2024:1-13.