Araştırma Makalesi
BibTex RIS Kaynak Göster

Sagbi bases over the product of rings

Yıl 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1575706

Öz

Let $R$ be a commutative ring such that $R=R_1\times \cdots \times R_n$. In this paper, we give a method to compute (strong) Sagbi bases for subalgebras of a polynomial ring over $R$ provided that these bases are computable in a polynomial ring over $R_i$ for $1\leq i \leq n$. As an application, we prove the existence of strong Sagbi bases for subalgebras in a polynomial ring over a principal ideal ring.

Kaynakça

  • W. W. Adams, S. Hosten, P. Loustaunau and J. L. Miller, Sagbi and Sagbi-Gröbner bases over principal ideal domains, J. Symbolic Comput., 27(1) (1999), 31-47.
  • W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.
  • B. Buchberger, An Algorithm for Finding the Bases of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, Ph.D. thesis, University of Innsbruck, Austria, 1965.
  • B. Buchberger and F. Winkler, Gröbner Bases and Applications, London Mathematical Society Lecture Note Series, 251, Cambridge University Press, Cambridge, 1998.
  • M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin, 2000.
  • J. L. Miller, Analogs of Gröbner bases in polynomial rings over a ring, J. Symbolic Comput., 21(2) (1996), 139-153.
  • G. H. Norton and A. Salagean, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc., 64(3) (2001), 505-528.
  • G. H. Norton and A. Salagean, Gröbner bases and products of coefficient rings, Bull. Austral. Math. Soc., 65(1) (2002), 145-152.
  • L. Robbiano and M. Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988), Lecture Notes in Math., Springer, Berlin, 1430 (1990), 61-87.
  • M. Stillman and H. Tsai, Using Sagbi bases to compute invariants, J. Pure Appl. Algebra, 139(1-3) (1999), 285-302.
  • O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Graduate Texts in Mathematics, 28, Springer-Verlag, New York-Heidelberg-Berlin, 1975.
Yıl 2024, Early Access, 1 - 11
https://doi.org/10.24330/ieja.1575706

Öz

Kaynakça

  • W. W. Adams, S. Hosten, P. Loustaunau and J. L. Miller, Sagbi and Sagbi-Gröbner bases over principal ideal domains, J. Symbolic Comput., 27(1) (1999), 31-47.
  • W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.
  • B. Buchberger, An Algorithm for Finding the Bases of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, Ph.D. thesis, University of Innsbruck, Austria, 1965.
  • B. Buchberger and F. Winkler, Gröbner Bases and Applications, London Mathematical Society Lecture Note Series, 251, Cambridge University Press, Cambridge, 1998.
  • M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin, 2000.
  • J. L. Miller, Analogs of Gröbner bases in polynomial rings over a ring, J. Symbolic Comput., 21(2) (1996), 139-153.
  • G. H. Norton and A. Salagean, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc., 64(3) (2001), 505-528.
  • G. H. Norton and A. Salagean, Gröbner bases and products of coefficient rings, Bull. Austral. Math. Soc., 65(1) (2002), 145-152.
  • L. Robbiano and M. Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988), Lecture Notes in Math., Springer, Berlin, 1430 (1990), 61-87.
  • M. Stillman and H. Tsai, Using Sagbi bases to compute invariants, J. Pure Appl. Algebra, 139(1-3) (1999), 285-302.
  • O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Graduate Texts in Mathematics, 28, Springer-Verlag, New York-Heidelberg-Berlin, 1975.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Nazia Jabeen

Junaid Khan

Erken Görünüm Tarihi 29 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 28 Haziran 2024
Kabul Tarihi 11 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Jabeen, N., & Khan, J. (2024). Sagbi bases over the product of rings. International Electronic Journal of Algebra1-11. https://doi.org/10.24330/ieja.1575706
AMA Jabeen N, Khan J. Sagbi bases over the product of rings. IEJA. Published online 01 Ekim 2024:1-11. doi:10.24330/ieja.1575706
Chicago Jabeen, Nazia, ve Junaid Khan. “Sagbi Bases over the Product of Rings”. International Electronic Journal of Algebra, Ekim (Ekim 2024), 1-11. https://doi.org/10.24330/ieja.1575706.
EndNote Jabeen N, Khan J (01 Ekim 2024) Sagbi bases over the product of rings. International Electronic Journal of Algebra 1–11.
IEEE N. Jabeen ve J. Khan, “Sagbi bases over the product of rings”, IEJA, ss. 1–11, Ekim 2024, doi: 10.24330/ieja.1575706.
ISNAD Jabeen, Nazia - Khan, Junaid. “Sagbi Bases over the Product of Rings”. International Electronic Journal of Algebra. Ekim 2024. 1-11. https://doi.org/10.24330/ieja.1575706.
JAMA Jabeen N, Khan J. Sagbi bases over the product of rings. IEJA. 2024;:1–11.
MLA Jabeen, Nazia ve Junaid Khan. “Sagbi Bases over the Product of Rings”. International Electronic Journal of Algebra, 2024, ss. 1-11, doi:10.24330/ieja.1575706.
Vancouver Jabeen N, Khan J. Sagbi bases over the product of rings. IEJA. 2024:1-11.