Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 15
https://doi.org/10.24330/ieja.1578725

Öz

Kaynakça

  • R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc., 63 (1948), 457-481.
  • G. Azumaya, Strongly $\pi$-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I, 13 (1954), 34-39.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • W. C. Brown, Matrices Over Commutative Rings, Monographs and Textbooks in Pure and Applied Mathematics, 169, Marcel Dekker, Inc., New York, 1993.
  • G. Calugareanu, Tripotents: a class of strongly clean elements in rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 26(1) (2018), 69-80.
  • G. Calugareanu, The formula $ABA=Tr(AB)A$ for matrices, Beitr. Algebra Geom., (2024), https://doi.org/10.1007/s13366-024-00756-9.
  • G. Ehrlich, Unit-regular rings, Portugal. Math., 27 (1968), 209-212.
  • W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra, 27(8) (1999), 3583-3592.

On the equation $a^{2}x=a$ in unital rings

Yıl 2024, Early Access, 1 - 15
https://doi.org/10.24330/ieja.1578725

Öz

In an arbitrary ring, the equation in the title defines the left strongly regular elements. Elements that are both left and right strongly regular are simply called strongly regular. If all elements of a ring are left strongly regular, then they are, in fact, strongly regular and this is the definition of strongly regular rings.

We provide a characterization of when a left strongly regular element is indeed strongly regular, based on an intrinsic condition. While we show that it is not possible to give $2\times 2$ non-examples over $\mathbb{Z}$ or in certain matrix rings over $\mathbb{Z}_{n}$ for $n\in \{8,9,16\}$, we present two examples by George Bergman: a left strongly regular element that is not regular and a regular, left strongly regular element that is not strongly regular.

Further, we prove results for left strongly regular (square) matrices over various types of rings and propose a conjecture, strongly supported by computational evidence: over commutative rings, left strongly regular matrices are strongly regular.

Kaynakça

  • R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc., 63 (1948), 457-481.
  • G. Azumaya, Strongly $\pi$-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I, 13 (1954), 34-39.
  • G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29(2) (1978), 178-218.
  • W. C. Brown, Matrices Over Commutative Rings, Monographs and Textbooks in Pure and Applied Mathematics, 169, Marcel Dekker, Inc., New York, 1993.
  • G. Calugareanu, Tripotents: a class of strongly clean elements in rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 26(1) (2018), 69-80.
  • G. Calugareanu, The formula $ABA=Tr(AB)A$ for matrices, Beitr. Algebra Geom., (2024), https://doi.org/10.1007/s13366-024-00756-9.
  • G. Ehrlich, Unit-regular rings, Portugal. Math., 27 (1968), 209-212.
  • W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra, 27(8) (1999), 3583-3592.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Grigore Călugăreanu

Horia F. Pop Bu kişi benim

Erken Görünüm Tarihi 4 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 22 Haziran 2024
Kabul Tarihi 24 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Călugăreanu, G., & Pop, H. F. (2024). On the equation $a^{2}x=a$ in unital rings. International Electronic Journal of Algebra1-15. https://doi.org/10.24330/ieja.1578725
AMA Călugăreanu G, Pop HF. On the equation $a^{2}x=a$ in unital rings. IEJA. Published online 01 Kasım 2024:1-15. doi:10.24330/ieja.1578725
Chicago Călugăreanu, Grigore, ve Horia F. Pop. “On the Equation $a^{2}x=a$ in Unital Rings”. International Electronic Journal of Algebra, Kasım (Kasım 2024), 1-15. https://doi.org/10.24330/ieja.1578725.
EndNote Călugăreanu G, Pop HF (01 Kasım 2024) On the equation $a^{2}x=a$ in unital rings. International Electronic Journal of Algebra 1–15.
IEEE G. Călugăreanu ve H. F. Pop, “On the equation $a^{2}x=a$ in unital rings”, IEJA, ss. 1–15, Kasım 2024, doi: 10.24330/ieja.1578725.
ISNAD Călugăreanu, Grigore - Pop, Horia F. “On the Equation $a^{2}x=a$ in Unital Rings”. International Electronic Journal of Algebra. Kasım 2024. 1-15. https://doi.org/10.24330/ieja.1578725.
JAMA Călugăreanu G, Pop HF. On the equation $a^{2}x=a$ in unital rings. IEJA. 2024;:1–15.
MLA Călugăreanu, Grigore ve Horia F. Pop. “On the Equation $a^{2}x=a$ in Unital Rings”. International Electronic Journal of Algebra, 2024, ss. 1-15, doi:10.24330/ieja.1578725.
Vancouver Călugăreanu G, Pop HF. On the equation $a^{2}x=a$ in unital rings. IEJA. 2024:1-15.