Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Early Access, 1 - 8
https://doi.org/10.24330/ieja.1587178

Öz

Kaynakça

  • P. Back and J. Richter, On the hom-associative Weyl algebras, J. Pure Appl. Algebra, 224(9) (2020), 106368 (12 pp).
  • P. Back and J. Richter, The hom-associative Weyl algebras in prime characteristic, Int. Electron. J. Algebra, 31 (2022), 203-229.
  • P. Back, J. Richter and S. Silvestrov, Hom-associative Ore extensions and weak unitalizations, Int. Electron. J. Algebra, 24 (2018), 174-194.
  • J. Dixmier, Sur les algebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209-242.
  • J. Dixmier, Sur les algebres de Weyl II, Bull. Sci. Math., 94 (1970), 289-301.
  • Y. Fregier and A. Gohr, On unitality conditions for Hom-associative algebras, arXiv:0904.4874 [math.RA] (2009).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc., 8(2) (1976), 168-173.
  • J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18(3) (1978), 429-442.
  • D. Yau, Hom-algebras and homology, J. Lie Theory, 19(2) (2009), 409-421.

Ideals in hom-associative Weyl algebras

Yıl 2024, Early Access, 1 - 8
https://doi.org/10.24330/ieja.1587178

Öz

We introduce hom-associative versions of the higher order Weyl algebras, generalizing the construction of the first hom-associative Weyl algebras. We then show that the higher order hom-associative Weyl algebras are simple, and that all their one-sided ideals are principal.

Kaynakça

  • P. Back and J. Richter, On the hom-associative Weyl algebras, J. Pure Appl. Algebra, 224(9) (2020), 106368 (12 pp).
  • P. Back and J. Richter, The hom-associative Weyl algebras in prime characteristic, Int. Electron. J. Algebra, 31 (2022), 203-229.
  • P. Back, J. Richter and S. Silvestrov, Hom-associative Ore extensions and weak unitalizations, Int. Electron. J. Algebra, 24 (2018), 174-194.
  • J. Dixmier, Sur les algebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209-242.
  • J. Dixmier, Sur les algebres de Weyl II, Bull. Sci. Math., 94 (1970), 289-301.
  • Y. Fregier and A. Gohr, On unitality conditions for Hom-associative algebras, arXiv:0904.4874 [math.RA] (2009).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc., 8(2) (1976), 168-173.
  • J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18(3) (1978), 429-442.
  • D. Yau, Hom-algebras and homology, J. Lie Theory, 19(2) (2009), 409-421.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Per Back Bu kişi benim

Johan Richter Bu kişi benim

Erken Görünüm Tarihi 18 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 15 Mart 2024
Kabul Tarihi 31 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Early Access

Kaynak Göster

APA Back, P., & Richter, J. (2024). Ideals in hom-associative Weyl algebras. International Electronic Journal of Algebra1-8. https://doi.org/10.24330/ieja.1587178
AMA Back P, Richter J. Ideals in hom-associative Weyl algebras. IEJA. Published online 01 Kasım 2024:1-8. doi:10.24330/ieja.1587178
Chicago Back, Per, ve Johan Richter. “Ideals in Hom-Associative Weyl Algebras”. International Electronic Journal of Algebra, Kasım (Kasım 2024), 1-8. https://doi.org/10.24330/ieja.1587178.
EndNote Back P, Richter J (01 Kasım 2024) Ideals in hom-associative Weyl algebras. International Electronic Journal of Algebra 1–8.
IEEE P. Back ve J. Richter, “Ideals in hom-associative Weyl algebras”, IEJA, ss. 1–8, Kasım 2024, doi: 10.24330/ieja.1587178.
ISNAD Back, Per - Richter, Johan. “Ideals in Hom-Associative Weyl Algebras”. International Electronic Journal of Algebra. Kasım 2024. 1-8. https://doi.org/10.24330/ieja.1587178.
JAMA Back P, Richter J. Ideals in hom-associative Weyl algebras. IEJA. 2024;:1–8.
MLA Back, Per ve Johan Richter. “Ideals in Hom-Associative Weyl Algebras”. International Electronic Journal of Algebra, 2024, ss. 1-8, doi:10.24330/ieja.1587178.
Vancouver Back P, Richter J. Ideals in hom-associative Weyl algebras. IEJA. 2024:1-8.