Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 35
https://doi.org/10.24330/ieja.1603795

Abstract

References

  • T. Albu and M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie (N. S.), 56(104) (2013), 33-46.
  • T. Albu and M. Iosif, On socle and radical of modular lattices, Ann. Univ. Buchar. Math. Ser., 5(63) (2014), 187-194.
  • T. Albu and M. Iosif, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra, 444 (2015), 339-366.
  • G. Calugareanu, Lattice Concepts of Module Theory, Kluwer Texts in the Mathematical Sciences, 22, Kluwer Academic Publishers, Dordrecht, 2000.
  • A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14(3) (2007), 489-496.
  • S. Mac Lane, Categories for the Working Mathematician, Second edition, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998.
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Some isomorphic big lattices and some properties of lattice preradicals, J. Algebra Appl., 19(7) (2020), 2050140 (29 pp).
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Big lattices of hereditary and natural classes of linear modular lattices, Algebra Universalis, 82(4) (2021), 52 (15 pp).
  • M. K. Patel, Properties of semi-projective modules and their endomorphism rings, In: Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 321-328.

On semi-projective modular lattices

Year 2024, Early Access, 1 - 35
https://doi.org/10.24330/ieja.1603795

Abstract

A. Haghany and M. Vedadi, as well as M. K. Patel, explored the relationship between a semi-projective and retractable module and its endomorphism ring. In this work, we study the lattice-theoretic counterparts of these results. To this end, we consider the category of linear modular lattices. Specifically, we show a relation between a retractable and semi-projective complete modular lattice and its monoid of endomorphisms.

References

  • T. Albu and M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie (N. S.), 56(104) (2013), 33-46.
  • T. Albu and M. Iosif, On socle and radical of modular lattices, Ann. Univ. Buchar. Math. Ser., 5(63) (2014), 187-194.
  • T. Albu and M. Iosif, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra, 444 (2015), 339-366.
  • G. Calugareanu, Lattice Concepts of Module Theory, Kluwer Texts in the Mathematical Sciences, 22, Kluwer Academic Publishers, Dordrecht, 2000.
  • A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14(3) (2007), 489-496.
  • S. Mac Lane, Categories for the Working Mathematician, Second edition, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998.
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Some isomorphic big lattices and some properties of lattice preradicals, J. Algebra Appl., 19(7) (2020), 2050140 (29 pp).
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Big lattices of hereditary and natural classes of linear modular lattices, Algebra Universalis, 82(4) (2021), 52 (15 pp).
  • M. K. Patel, Properties of semi-projective modules and their endomorphism rings, In: Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 321-328.
There are 9 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Francisco Gonzalez Bayona This is me

Sebastian Pardo Guerra This is me

Manuel Gerardo Zorrilla Noriega

Hugo Alberto Rincon Mejia

Early Pub Date December 18, 2024
Publication Date
Submission Date September 9, 2024
Acceptance Date December 8, 2024
Published in Issue Year 2024 Early Access

Cite

APA Gonzalez Bayona, F., Pardo Guerra, S., Zorrilla Noriega, M. G., Rincon Mejia, H. A. (2024). On semi-projective modular lattices. International Electronic Journal of Algebra1-35. https://doi.org/10.24330/ieja.1603795
AMA Gonzalez Bayona F, Pardo Guerra S, Zorrilla Noriega MG, Rincon Mejia HA. On semi-projective modular lattices. IEJA. Published online December 1, 2024:1-35. doi:10.24330/ieja.1603795
Chicago Gonzalez Bayona, Francisco, Sebastian Pardo Guerra, Manuel Gerardo Zorrilla Noriega, and Hugo Alberto Rincon Mejia. “On Semi-Projective Modular Lattices”. International Electronic Journal of Algebra, December (December 2024), 1-35. https://doi.org/10.24330/ieja.1603795.
EndNote Gonzalez Bayona F, Pardo Guerra S, Zorrilla Noriega MG, Rincon Mejia HA (December 1, 2024) On semi-projective modular lattices. International Electronic Journal of Algebra 1–35.
IEEE F. Gonzalez Bayona, S. Pardo Guerra, M. G. Zorrilla Noriega, and H. A. Rincon Mejia, “On semi-projective modular lattices”, IEJA, pp. 1–35, December 2024, doi: 10.24330/ieja.1603795.
ISNAD Gonzalez Bayona, Francisco et al. “On Semi-Projective Modular Lattices”. International Electronic Journal of Algebra. December 2024. 1-35. https://doi.org/10.24330/ieja.1603795.
JAMA Gonzalez Bayona F, Pardo Guerra S, Zorrilla Noriega MG, Rincon Mejia HA. On semi-projective modular lattices. IEJA. 2024;:1–35.
MLA Gonzalez Bayona, Francisco et al. “On Semi-Projective Modular Lattices”. International Electronic Journal of Algebra, 2024, pp. 1-35, doi:10.24330/ieja.1603795.
Vancouver Gonzalez Bayona F, Pardo Guerra S, Zorrilla Noriega MG, Rincon Mejia HA. On semi-projective modular lattices. IEJA. 2024:1-35.