Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 29
https://doi.org/10.24330/ieja.1646846

Abstract

References

  • N. Bera and B. Dhara, $b$-generalized skew derivations acting on multilinear polynomials in prime rings, Comm. Algebra, 53(2) (2025), 761-780.
  • C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
  • V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra, 40(6) (2012), 1918-1932.
  • B. Dhara, $b$-Generalized derivations on multilinear polynomials in prime rings, Bull. Korean Math. Soc., 55(2) (2018), 573-586.
  • B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J., 68(1) (2018), 95-119.
  • B. Dhara and N. Argac, Generalized derivations acting on multilinear polynomials in prime rings and Banach algebras, Commun. Math. Stat., 4(1) (2016), 39-54.
  • B. Dhara and V. De Filippis, $b$-Generalized derivations acting on multilinear polynomials in prime rings, Algebra Colloq., 25(4) (2018), 681-700.
  • T. S. Erickson, W. S. Martindale, III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60(1) (1975), 49-63.
  • C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar., 14 (1963), 369-371.
  • C. Gupta, On $b$-generalized derivations in prime rings, Rend. Circ. Mat. Palermo, (2), 72(4) (2023), 2703-2720.
  • N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  • V. K. Kharchenko, Differential identities of prime rings, Algebra Logic, 17 (1978), 155-168.
  • M. T. Kosan and T. K. Lee, $b$-Generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc., 96(3) (2014), 326-337.
  • T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
  • U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), 97-103.
  • C.-K. Liu, An Engel condition with b-generalized derivations, Linear Multilinear Algebra, 65(2) (2017), 300-312.
  • W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
  • T. Pehlivan and E. Albas, $b$-Generalized derivations on prime rings, Ukrainian Math. J., 74(6) (2022), 953-966.
  • B. Prajapati, S. K. Tiwari and C. Gupta, $b$-generalized derivations act as a multipliers on prime rings, Comm. Algebra, 50(8) (2022), 3498-3515.
  • S. K. Tiwari, Identities with generalized derivations in prime rings, Rend. Circ. Mat. Palermo, (2), 71(1) (2022), 207-223.
  • S. K. Tiwari and B. Prajapati, Centralizing $b$-generalized derivations on multilinear polynomials, Filomat, 33(19) (2019), 6251-6266.
  • T.-L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq., 3(4) (1996), 369-378.

Action of three $X$-generalized derivations in prime rings

Year 2025, Early Access, 1 - 29
https://doi.org/10.24330/ieja.1646846

Abstract

Let $\mathfrak{R}$ be a prime ring of characteristic different from $2$, $\mathcal{Q}_r^m$ be its maximal right ring of quotients, $\mathcal{C}$ be its extended centroid and $\omega(s_1,\ldots,s_n)$ be a noncentral multilinear polynomial over $\mathcal{C}$. Suppose that $\mathcal{H}_1$, $\mathcal{H}_2$ and $\mathcal{H}_3$ are three $X$-generalized derivations on $\mathfrak{R}$. If $$\mathcal{H}_1\bigg(\mathcal{H}_2(\omega(s_1,\ldots,s_n))\omega(s_1,\ldots,s_n)\bigg)=\mathcal{H}_3(\omega(s_1,\ldots,s_n)^2)$$ for all $s_1,\ldots,s_n\in \mathfrak{R}$, then we detail all potential configurations of the maps $\mathcal{H}_1, \mathcal{H}_2$ and $\mathcal{H}_3$.

References

  • N. Bera and B. Dhara, $b$-generalized skew derivations acting on multilinear polynomials in prime rings, Comm. Algebra, 53(2) (2025), 761-780.
  • C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
  • V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra, 40(6) (2012), 1918-1932.
  • B. Dhara, $b$-Generalized derivations on multilinear polynomials in prime rings, Bull. Korean Math. Soc., 55(2) (2018), 573-586.
  • B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czechoslovak Math. J., 68(1) (2018), 95-119.
  • B. Dhara and N. Argac, Generalized derivations acting on multilinear polynomials in prime rings and Banach algebras, Commun. Math. Stat., 4(1) (2016), 39-54.
  • B. Dhara and V. De Filippis, $b$-Generalized derivations acting on multilinear polynomials in prime rings, Algebra Colloq., 25(4) (2018), 681-700.
  • T. S. Erickson, W. S. Martindale, III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60(1) (1975), 49-63.
  • C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar., 14 (1963), 369-371.
  • C. Gupta, On $b$-generalized derivations in prime rings, Rend. Circ. Mat. Palermo, (2), 72(4) (2023), 2703-2720.
  • N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
  • V. K. Kharchenko, Differential identities of prime rings, Algebra Logic, 17 (1978), 155-168.
  • M. T. Kosan and T. K. Lee, $b$-Generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc., 96(3) (2014), 326-337.
  • T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
  • U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), 97-103.
  • C.-K. Liu, An Engel condition with b-generalized derivations, Linear Multilinear Algebra, 65(2) (2017), 300-312.
  • W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
  • T. Pehlivan and E. Albas, $b$-Generalized derivations on prime rings, Ukrainian Math. J., 74(6) (2022), 953-966.
  • B. Prajapati, S. K. Tiwari and C. Gupta, $b$-generalized derivations act as a multipliers on prime rings, Comm. Algebra, 50(8) (2022), 3498-3515.
  • S. K. Tiwari, Identities with generalized derivations in prime rings, Rend. Circ. Mat. Palermo, (2), 71(1) (2022), 207-223.
  • S. K. Tiwari and B. Prajapati, Centralizing $b$-generalized derivations on multilinear polynomials, Filomat, 33(19) (2019), 6251-6266.
  • T.-L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq., 3(4) (1996), 369-378.
There are 22 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Basudeb Dhara

Vincenzo De Filippis

S. Kar

Manami Bera

Early Pub Date February 25, 2025
Publication Date
Submission Date September 3, 2024
Acceptance Date January 25, 2025
Published in Issue Year 2025 Early Access

Cite

APA Dhara, B., De Filippis, V., Kar, S., Bera, M. (2025). Action of three $X$-generalized derivations in prime rings. International Electronic Journal of Algebra1-29. https://doi.org/10.24330/ieja.1646846
AMA Dhara B, De Filippis V, Kar S, Bera M. Action of three $X$-generalized derivations in prime rings. IEJA. Published online February 1, 2025:1-29. doi:10.24330/ieja.1646846
Chicago Dhara, Basudeb, Vincenzo De Filippis, S. Kar, and Manami Bera. “Action of Three $X$-Generalized Derivations in Prime Rings”. International Electronic Journal of Algebra, February (February 2025), 1-29. https://doi.org/10.24330/ieja.1646846.
EndNote Dhara B, De Filippis V, Kar S, Bera M (February 1, 2025) Action of three $X$-generalized derivations in prime rings. International Electronic Journal of Algebra 1–29.
IEEE B. Dhara, V. De Filippis, S. Kar, and M. Bera, “Action of three $X$-generalized derivations in prime rings”, IEJA, pp. 1–29, February 2025, doi: 10.24330/ieja.1646846.
ISNAD Dhara, Basudeb et al. “Action of Three $X$-Generalized Derivations in Prime Rings”. International Electronic Journal of Algebra. February 2025. 1-29. https://doi.org/10.24330/ieja.1646846.
JAMA Dhara B, De Filippis V, Kar S, Bera M. Action of three $X$-generalized derivations in prime rings. IEJA. 2025;:1–29.
MLA Dhara, Basudeb et al. “Action of Three $X$-Generalized Derivations in Prime Rings”. International Electronic Journal of Algebra, 2025, pp. 1-29, doi:10.24330/ieja.1646846.
Vancouver Dhara B, De Filippis V, Kar S, Bera M. Action of three $X$-generalized derivations in prime rings. IEJA. 2025:1-29.