Research Article
BibTex RIS Cite

The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field

Year 2022, Volume: 32 Issue: 32, 176 - 191, 16.07.2022
https://doi.org/10.24330/ieja.1077623

Abstract

Let $\mathcal{FG}$ be the group algebra of the group $\mathcal{G}$ over the field $\mathcal{F}$ having characteristic $p>0$ and $q=p^{n}$ elements and $\mathscr{U}\mathcal{(FG)}$ be the unit group of $\mathcal{FG}$. In this paper, we are proceeding to determine the structure of unit group of group algebra of all four non isomorphic abelian groups and one non abelian group $C_{3}\times A_{4}$ of order $36$, for any prime $p>0$.

References

  • S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order 20, Quaest. Math., 44(4) (2021), 503-511.
  • S. Bhatt and H. Chandra, Structure of unit group of $F_{p^n}D_{60}$, Asian-Eur. J. Math., 14(5) (2021), 2150075 (9 pp.).
  • A. A. Bovdi and A. Szakact, A basis for the unitary subgroup of the group of units in a finite commutative group algebra, Publ. Math. Debrecen, 46(1-2) (1995), 97-120.
  • R. A. Ferraz, Simple components of the center of FG/J(FG), Comm. Algebra, 36(9) (2008), 3191-3199.
  • J. Gildea, The structure of the unitary units of the group algebra $F_{2^k} D_8$, Int. Electron. J. Algebra, 9 (2011), 171-176.
  • J. Gildea and F. Monaghan, Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math., 11(1) (2011), 46-58.
  • G. Higman, Units in Group Rings, Ph.D. Thesis, Univ. Oxford, 1940.
  • G. Higman, The units of group rings, Proc. London Math. Soc., (2)46 (1940), 231-248.
  • S. A. Jennings, The structure of the group ring of a p-group over a modular fields, Trans. Amer. Math.Soc., 50(1) (1941), 175-185.
  • G. Karpilovsky, Unit Groups of Classical Rings, The Clarendon Press, Oxford University Press, New York, 1988.
  • G. Karplipovsky, The Jacobson Radical of Group Algebras, North-Holland Publishing Co., Amsterdam, 1987.
  • M. Khan, R. K. Sharma and J. B. Srivastava, The unit group of $FS_{4}$, Acta Math. Hungar., 118(1-2) (2008), 105-113.
  • C. P. Milies and S. K. Sehgal, An Introduction to Group Rings Algebras and Applications, Springer Science & Business Media, 2002.
  • F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12 (2012), 133-161.
  • D. S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, Wiley, New York, 1977.
  • M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most 16, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp.).
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_3$, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 23(2) (2007), 129-142.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FA_4$, Publ. Math. Debrecen, 71(1-2) (2007), 21-26.
  • G. Tang and Y. Gao, The unit group of FG of group with order 12, Int. J. Pure Appl. Math., 73(2) (2011), 143-158.
  • G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.
Year 2022, Volume: 32 Issue: 32, 176 - 191, 16.07.2022
https://doi.org/10.24330/ieja.1077623

Abstract

References

  • S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order 20, Quaest. Math., 44(4) (2021), 503-511.
  • S. Bhatt and H. Chandra, Structure of unit group of $F_{p^n}D_{60}$, Asian-Eur. J. Math., 14(5) (2021), 2150075 (9 pp.).
  • A. A. Bovdi and A. Szakact, A basis for the unitary subgroup of the group of units in a finite commutative group algebra, Publ. Math. Debrecen, 46(1-2) (1995), 97-120.
  • R. A. Ferraz, Simple components of the center of FG/J(FG), Comm. Algebra, 36(9) (2008), 3191-3199.
  • J. Gildea, The structure of the unitary units of the group algebra $F_{2^k} D_8$, Int. Electron. J. Algebra, 9 (2011), 171-176.
  • J. Gildea and F. Monaghan, Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math., 11(1) (2011), 46-58.
  • G. Higman, Units in Group Rings, Ph.D. Thesis, Univ. Oxford, 1940.
  • G. Higman, The units of group rings, Proc. London Math. Soc., (2)46 (1940), 231-248.
  • S. A. Jennings, The structure of the group ring of a p-group over a modular fields, Trans. Amer. Math.Soc., 50(1) (1941), 175-185.
  • G. Karpilovsky, Unit Groups of Classical Rings, The Clarendon Press, Oxford University Press, New York, 1988.
  • G. Karplipovsky, The Jacobson Radical of Group Algebras, North-Holland Publishing Co., Amsterdam, 1987.
  • M. Khan, R. K. Sharma and J. B. Srivastava, The unit group of $FS_{4}$, Acta Math. Hungar., 118(1-2) (2008), 105-113.
  • C. P. Milies and S. K. Sehgal, An Introduction to Group Rings Algebras and Applications, Springer Science & Business Media, 2002.
  • F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12 (2012), 133-161.
  • D. S. Passman, The Algebraic Structure of Group Rings, Pure and Applied Mathematics, Wiley, New York, 1977.
  • M. Sahai and S. F. Ansari, Unit groups of finite group algebras of abelian groups of order at most 16, Asian-Eur. J. Math., 14(3) (2021), 2150030 (17 pp.).
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FS_3$, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 23(2) (2007), 129-142.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of $FA_4$, Publ. Math. Debrecen, 71(1-2) (2007), 21-26.
  • G. Tang and Y. Gao, The unit group of FG of group with order 12, Int. J. Pure Appl. Math., 73(2) (2011), 143-158.
  • G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(139)(1) (2014), 149-157.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Harish Chandra This is me

Shivangni Mıshra This is me

Publication Date July 16, 2022
Published in Issue Year 2022 Volume: 32 Issue: 32

Cite

APA Chandra, H., & Mıshra, S. (2022). The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field. International Electronic Journal of Algebra, 32(32), 176-191. https://doi.org/10.24330/ieja.1077623
AMA Chandra H, Mıshra S. The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field. IEJA. July 2022;32(32):176-191. doi:10.24330/ieja.1077623
Chicago Chandra, Harish, and Shivangni Mıshra. “The Group of Units of Group Algebras of Abelian Groups of Order 36 and $C_{3}\times A_{4}$ over Any Finite Field”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 176-91. https://doi.org/10.24330/ieja.1077623.
EndNote Chandra H, Mıshra S (July 1, 2022) The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field. International Electronic Journal of Algebra 32 32 176–191.
IEEE H. Chandra and S. Mıshra, “The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field”, IEJA, vol. 32, no. 32, pp. 176–191, 2022, doi: 10.24330/ieja.1077623.
ISNAD Chandra, Harish - Mıshra, Shivangni. “The Group of Units of Group Algebras of Abelian Groups of Order 36 and $C_{3}\times A_{4}$ over Any Finite Field”. International Electronic Journal of Algebra 32/32 (July 2022), 176-191. https://doi.org/10.24330/ieja.1077623.
JAMA Chandra H, Mıshra S. The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field. IEJA. 2022;32:176–191.
MLA Chandra, Harish and Shivangni Mıshra. “The Group of Units of Group Algebras of Abelian Groups of Order 36 and $C_{3}\times A_{4}$ over Any Finite Field”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 176-91, doi:10.24330/ieja.1077623.
Vancouver Chandra H, Mıshra S. The group of units of group algebras of abelian groups of order 36 and $C_{3}\times A_{4}$ over any finite field. IEJA. 2022;32(32):176-91.